

Center for Teaching, Research & Learning

CTRL Lab
American University, Washington, D.C.

http://www.american.edu/ctrl/
202-885-3862

Introduction to R
R is a programming language and an environment for statistical computing and graphics. It is a
open source project which is similar to the S language and environment which was developed at
Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and
colleagues. R provides a wide variety of statistical (linear and nonlinear modeling, classical
statistical tests, time-series analysis, classification, clustering, etc.) and graphical techniques, and
is highly extensible.
Course Objective

This course is designed to give a basic understanding of the R language and basic statistical
analysis in R.

Learning Outcomes
1. Basic building blocks of an R program
2. Data management, operations, and simple transformations.
3. Data transformation
4. Descriptive Statistics
5. Basic plotting with R
6. Accessing R libraries and installing additional packages
7. Addition information
8. Exporting your data

1. Basic R Windows
• R Console: Default window when you open R. This is the command-line

interface/output window.
• R Editor: Click on File > New Script. This is the primary script/code window. You

run commands in this window by pressing CTRL + R or run certain lines of code by
highlighting the lines and pressing these commands.

• Data Editor: When you’ve loaded data, type fix(name_of_dataset) to view and edit
your data in this window.

Creating Vectors Within R
Vectors are one-dimensional arrays that can hold numeric, character, or logical data.
Vectors can be created by using the arrow function within R.

x1<-2
x_2<-3
X.3<-7

http://www.american.edu/ctrl/

The arrow implies that youa re assigning the variable (x1) with the number 2. One thing
to keep in mind is that R’s programming language is VERY sensitive, so x1 does not
equal X1 or x_1.

Creating vectors/variables with multiple number assingments can be done by using the
c() function.
X5<-c(1,2,3,4,5,6)
We have now created the variable X5 with multiple data points within it.

We can also create a variable where a set of number repeats, rep(), x amount of times.
X6<-rep(c(1,2,3,4),3)

We can also perform matmatical function within R.
2+3^2
x1+x_2^2

y<-x_2^x1
y

We can also list all the varaibles we’ve created or from a dataset by using the ls()
function and remove them with the rm() function.
ls()
Note: by keeping the space inside the parenthesis blank, it uses our current workspace
within the R software. If we used a dataset name within the parenthesis, it would list all
the variables within the dataset.
rm(x1)
We can also remove an entire list of varaibles.
rm(list=ls())

2. Data management
R gives its users a wide variety of data management options. R can import data files in
text format. It can also import data generated from statistical packages such as S-Plus,
Stata, SPSS, SAS, and SYSTAT, in their native format. In addition, you can use standard
SQL strings to gain access to relational databases, including MS SQL Server, MySQL,
Oracle, IBM-DB2, etc.

Importing data (from a csv file)
You can set your working directory using the setwd function. When specifying the path,
use either double back slashes or single forward slashes.

setwd(“C:/”)
or
setwd(“C:\\”)

You can also check your current working directory by using the getwd function.

getwd()

Then we use the read.csv function to import data from a comma-delimited text file,
nations.csv, and create the data frame data. For the assignment operator, R will accept
either <- or =. As an example data file, we will use the nations.csv data. This file is saved
in J:\CLASSES\RSG\Tutorial Data\nations.csv.

As an example data file, we will use the nations.csv data. This file is saved in
J:\CLASSES\RSG\Tutorial Data\nations.csv.

We use the read.csv function to import data from a comma-delimited text file,
nations.csv, and create the data frame data. For the assignment operator, R accepts <- .
data1<-read.csv(“J:\\CLASSES\\RSG\\Tutorial Data\\nations.csv”, header=TRUE)

The first argument of the read.csv function is your file name with a file path. The second
argument indicates whether the variable names are depicted in the first row of the text file
(if not set it to FALSE.)

If you would rather click through a window to find your file, you can use the file chooser
function within the read.csv function.
data<-read.csv(file.choose(),header=TRUE)

This function will allow you to assign the file of your choice from the pop-up window to
the data frame name.

Viewing data
At any time, you can view your data using the fix function, which will pull up a separate
window that will allow you to manipulate your dataset within the dataset itself.
fix(data)

You can also just view the data set in a separate window using the View() function. In
contrast to the fix() function, you can not manipulate and edit your data set with this
function.

You can view the variable names only byusing the colnames() or names()function.
colnames(data) or names(data)
or the rownames(data)

We can even pinpoint one observation within the whole dataset using the data[x,y].
Notice that we are using brackets [] instead of parenthesis (). The [] tell R that we are
specifically looking inside the data frame itself. The x represents the row number and y
the column number.
data[2,3]
Allows us to see only the row.
data[,3]
Allows us to see only the column.
data[2,]

If we want to pull up only one variable, we can just type out the data set and variable
name with a $ separating the two. The “data$” part makes sure to concatenate the new
variable “humandev” to the dataset named “data”.
data$humandev

We can also use the function attach to allow you to directly refer to the variable names
available in the data set. The function names will list the variable names in the dataset.
You will need to attach a data set again if you modify or add a variable winthin the data
set.
attach(data)

3. Data Transformation
You can transform you data many different ways within R. One of the common
problems is when your numeric data is considered a character string.

One way we can check to see whether our variables are considered numeric or charcters
is through the str() function.
str(data)

is.numeric(calories)
is.character(humandev)
is.factor(country)

If your variables are imported as characters but should be considered numeric we can use
the as.numeric() function to convert them.
data$calories2<-as.numeric(calories)
attach(data)
We are revering back to using data$ before the variable name because we are creating a
new variable that we wish to be apart of the dataset data. Other wise, we could leave the $
out at it would just save into our current workspace.

4. Descriptive statistics
In this section we analyze our data using descriptive statistics. We begin by using the
summary function as a catch all for many descriptive statistics. We will also be
estimating the mean, median, standard deviation, and variance of a couple of variables
within the dataset.

The summary is a bit of a catch all fuction for descriptive statiscs. This fuction will
automatically produce the min, 1st quartile, median, mean, 3rd quartile, max, and number
of missing NA’s.
summary(data)
summary(humandev)

We can also calculate individual statisics like the mean, median, standard deviation,
variance, maximum, and minimum.
mean(popul)
mean(humandev)

In some cases, the data you are trying to use might have missing values. In this case, you
would not be able to use the function mentioned above, unless you explicitly specify to
omit the missing values. You can do that by introducing a second argument into the
above functions (where “na” and “rm” can be read as “not available” and “remove”,
respectively).
mean(humandev,na.rm=TRUE)

We can also do the same with…
Median
median(popul)
Standard Deviation
sd(popul)
Variance
var(popul)
Logarithm
log(popul)

Maximum
max(popul)
Minimum
min(popul)

 Range
 range(popul)
 Quantiles (defaults to 0,.25,.5,.75,1)
 quantile(popul)

We can also look at the relationship between two variables with corvariance and
correlation functions.
Covariance
cov(popgrowt,drate)

Correlation
cor(popgrowt,drate)

Correlation test with confidence intervals, t-values, p-values, df and correlation value.
cor.test(popgrowt,drate)

Frequency and Counts of Variables

Instead of looking at the basic mean, median, and mode, we can also look at the count of
a variable by using the table function
table(democrac)
table(democrac, unemploy)

5. Plotting
In this section we will create three different ways of visualizing out data. We will create a
boxplot, a histogram, and a scatterplot.

 To create a boxplot we can use the boxplot() function.
 boxplot(drate)
 summary(drate)

 Histrograms can be created using the hist() function.
 hist(drate)

 We can also modify the amount of columns and main title of the histogram using a few

extensions of the function. The break= function allows us to dictate the number of bars
that appear in the histrogram. The main=function allows to to title the main title of the
historgram.

 hist(drate, breaks=50, main="Frequency of Death Rate")

 If you want to know more about the historgram function simple type in ?hist in to the

consule. A pop-up window will appear with a description of the function, its different
extensions with explanations, and examples.

 ?hist

 Scatterplots allow us to visualize every point in our dataset and can be made using the

plot() function.
 plot(drate~calories)
 Note that when using the tild(~), the first variable will transfer to the y-axis and the

second variable the x-axis.
 We can also play with some exptensions of the plot() function.
 plot(drate~calories, col="red", xlab="Caloric Intake",ylab="death rate", pch=2,

xlim=c(1500,4250), ylim=c(0,30))
 The col= allows us to change the color of the datapoints, xlab= and ylab= relabels the

titles of the x and y axis, pch= changes the shape of the data points, and xlim= and
ylim= change the limits of the x and y axis.

 We can also create a scatterplot matrix with three varaibles instead of two.
 pairs(~drate+calories+humandev,main="Simple Scatterplot Matrix",pch=4)
 Since we don’t have a true y axis, all the variable are on the right of the tild(~) and have

plus signs (+) in between them to indicate that they are in addition to the x axis.
6. Libraries

Another benefit to using R is that you’re not confined to the basic function of the
program itself. With R being an open-source software, statistician and computer
programers are constantly creating packages that contain different and more specific
functions for different types of analysis or plotting of graphs. For example, laavan is a
package for doing Structural Equation Modeling.

To install a package, you will select ‘Tools’ from the toolbar above. Select ‘Install
Packages’ and type in the package you wish to download.
install.package(lattice)
To make the package you just downloaded active, you need to call it up from they library
using the library() function.
library(lattice)

Our previous plot was good and accurate, but it the data was obviously not linear.
We can use the xyplot() function in the lattice package to create a scatterplot with a
lowess line, a non-parametric line.
xyplot(calories~humandev,type=c("smooth", "p"), col="darkblue")

7. Other Additonal Information

If at any time you need help with a function, just type help(name_of_function) in the
Editor or Console. For example:

help(fix)

To insert comments in your code in the Editor window, use #:

Comment code like this

8. Exporting Your Data
The following code allows us to export our data in to a .csv file format. File= denotes the
file’s name and type. Row.names=TRUE tells R that the first row will be the variable
names, sep=”,” tells R to separate each cell by a common. You can also replace it with a /
or ! or any character you wish. In this case, were making a .csv file, so we want to have a
comma.

write.table(data,file="nations2.csv", row.names=TRUE, sep=",")

You can also export the files into other software file types (STATA, SAS, etc)

install.packages("foreign")

library(foreign)

write.foreign(data,
"C:\\Users\\rp7436a\\Desktop\\data.sps","C:\\Users\\rp7436a\\Desktop\\data.sps",
package="SPSS")

	Course Objective
	Learning Outcomes
	1. Basic R Windows
	Creating Vectors Within R
	2. Data management
	Importing data (from a csv file)
	Viewing data
	3. Data Transformation
	4. Descriptive statistics
	5. Plotting
	6. Libraries
	7. Other Additonal Information
	8. Exporting Your Data

