
#### Shapes and Symmetry

#### DC Math Circle American University

Professor Joshua Lansky







- I study symmetry of different kinds of shapes.
- Normally, if you do some transformation to a shape (like rotating it), you can tell because the shape looks different.
- But if the shape looks the same even after the transformation, the shape has *symmetry*—it's *symmetric*.

A mattress needs to be flipped from time to time, or else it gets lumpy and uncomfortable.

You can:

- "flip" it side-to-side (then it goes from position A to position C),
- "flop" it head-to-toe,
- "flipflop" it by flipping, then flopping,
- "flopflip" it by flopping, then flipping (same as a flipflop),
- be lazy and do nothing!



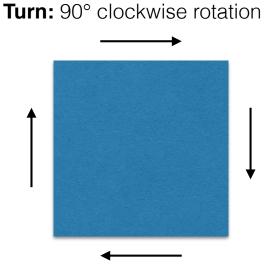
You can also do a combination of things to the mattress, like flipping, then flopflipping. If you do, then the new position of the mattress could have been achieved by doing just one transformation! Make a table that shows what happens to the mattress after I move it in *two* of these ways.

| then<br>first | Nothing | Flip | Flop | Flopflip |
|---------------|---------|------|------|----------|
| Nothing       |         |      |      |          |
| Flip          |         |      |      |          |
| Flop          |         |      |      |          |
| Flopflip      |         |      |      |          |

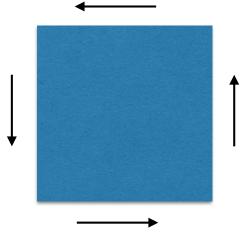
You can also do a combination of things to the mattress, like flipping, then flopflipping. If you do, then the new position of the mattress could have been achieved by doing just one transformation! Make a table that shows what happens to the mattress after I move it in *two* of these ways.

| then<br>first | Nothing  | Flip     | Flop     | Flopflip |
|---------------|----------|----------|----------|----------|
| Nothing       | Nothing  | Flip     | Flop     | Flopflip |
| Flip          | Flip     | Nothing  | Flopflip | Flop     |
| Flop          | Flop     | Flopflip | Nothing  | Flip     |
| Flopflip      | Flopflip | Flop     | Flip     | Nothing  |

Note that a flopflip is the same as a flat 180° rotation of the mattress!


What if the mattress is a square and not a rectangle?

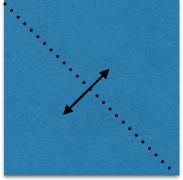
Then in addition to the previous rotations, you can also perform 90° rotations.


How many symmetries in total does the mattress have now?



So we have these two new rotations:




**Nurt:** 90° counterclockwise rotation



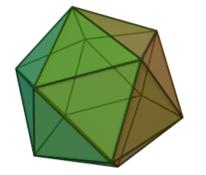
And we have two more reflections across diagonals:

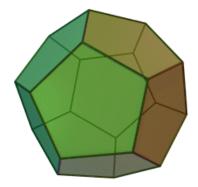
**Criss:** flipping across a diagonal

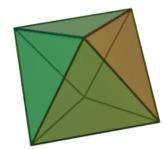
**Cross:** flipping across the other diagonal

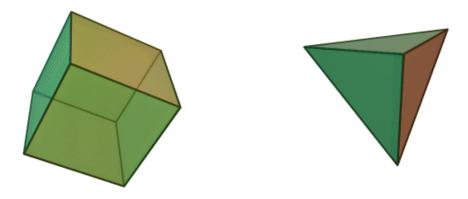


Complete this expanded table that shows what happens to the mattress after you do a combination of two of these moves.


| then<br>first | Nothing  | Flip     | Flop     | Flopflip | Turn<br>90° | Nurt<br>-90° | Criss | Cross |
|---------------|----------|----------|----------|----------|-------------|--------------|-------|-------|
| Nothing       | Nothing  | Flip     | Flop     | Flopflip | Turn        | Nurt         | Criss | Cross |
| Flip          | Flip     | Nothing  | Flopflip | Flop     |             |              |       |       |
| Flop          | Flop     | Flopflip | Nothing  | Flip     |             |              |       |       |
| Flopflip      | Flopflip | Flop     | Flip     | Nothing  |             |              |       |       |
| Turn<br>90°   | Turn     |          |          |          |             |              |       |       |
| Nurt<br>-90°  | Nurt     |          |          |          |             |              |       |       |
| Criss         | Criss    |          |          |          |             |              |       |       |
| Cross         | Cross    |          |          |          |             |              |       |       |


Complete this expanded table that shows what happens to the mattress after you do a combination of two of these moves.


| then<br>first | Nothing  | Flip     | Flop     | Flopflip | Turn<br>90° | Nurt<br>-90° | Criss    | Cross    |
|---------------|----------|----------|----------|----------|-------------|--------------|----------|----------|
| Nothing       | Nothing  | Flip     | Flop     | Flopflip | Turn        | Nurt         | Criss    | Cross    |
| Flip          | Flip     | Nothing  | Flopflip | Flop     | Criss       | Cross        | Turn     | Nurt     |
| Flop          | Flop     | Flopflip | Nothing  | Flip     | Cross       | Criss        | Nurt     | Turn     |
| Flopflip      | Flopflip | Flop     | Flip     | Nothing  | Nurt        | Turn         | Cross    | Criss    |
| Turn<br>90°   | Turn     | Cross    | Criss    | Nurt     | Flopflip    | Nothing      | Flop     | Flip     |
| Nurt<br>-90°  | Nurt     | Criss    | Cross    | Turn     | Nothing     | Flopflip     | Flip     | Flop     |
| Criss         | Criss    | Nurt     | Turn     | Cross    | Flop        | Flip         | Nothing  | Flopflip |
| Cross         | Cross    | Turn     | Nurt     | Criss    | Flip        | Flop         | Flopflip | Nothing  |


#### Regular Polyhedra

- A polyhedron is a three-dimensional shape with flat and straight edges.
- A polyhedron is regular if all of its faces are identical regular polygons —all the edges have the same length make the same angles.
- There are only 5 regular polyhedra: the tetrahedron, the cube, the octahedron, the dodecahedron, and the icosahedron.









# Regular Polyhedra

Complete the following table showing how many faces, edges and vertices the regular polyhedra have.

| Polyhedron   | Faces | Edges per<br>Face | Edges | Edges Meeting<br>at any Vertex | Vertices |
|--------------|-------|-------------------|-------|--------------------------------|----------|
| Tetrahedron  | 4     | 3                 |       | 3                              |          |
| Cube         | 6     | 4                 |       | 3                              |          |
| Octahedron   | 8     | 3                 |       | 4                              |          |
| Dodecahedron | 12    | 5                 |       | 3                              |          |
| Icosahedron  | 20    | 3                 |       | 5                              |          |

# Regular Polyhedra

Complete the following table showing how many faces, edges and vertices the regular polyhedra have.

| Polyhedron   | Faces | Edges per<br>Face | Edges                       | Edges Meeting<br>at any Vertex | Vertices                    |
|--------------|-------|-------------------|-----------------------------|--------------------------------|-----------------------------|
| Tetrahedron  | 4     | 3                 | $(4 \times 3) \div 2 = 6$   | 3                              | $(6 \times 2) \div 3 = 4$   |
| Cube         | 6     | 4                 | $(6 \times 4) \div 2 = 12$  | 3                              | $(12 \times 2) \div 3 = 8$  |
| Octahedron   | 8     | 3                 | $(8 \times 3) \div 2 = 12$  | 4                              | $(12 \times 2) \div 4 = 6$  |
| Dodecahedron | 12    | 5                 | $(12 \times 5) \div 2 = 30$ | 3                              | $(30 \times 2) \div 3 = 20$ |
| Icosahedron  | 20    | 3                 | $(20 \times 3) \div 2 = 30$ | 5                              | (30×2)÷5 = 12               |

## Symmetries of Regular Polyhedra

How many different symmetries do each of the regular polyhedra have? Complete the following table.

| Polyhedron   | Faces | Edges<br>per Face | Edges | Edges Meeting<br>at any Vertex | Vertices | Symmetries |
|--------------|-------|-------------------|-------|--------------------------------|----------|------------|
| Tetrahedron  | 4     | 3                 | 6     | 3                              | 4        |            |
| Cube         | 6     | 4                 | 12    | 3                              | 8        |            |
| Octahedron   | 8     | 3                 | 12    | 4                              | 6        |            |
| Dodecahedron | 12    | 5                 | 30    | 3                              | 20       |            |
| Icosahedron  | 20    | 3                 | 30    | 5                              | 12       |            |


## Symmetries of Regular Polyhedra

How many different symmetries do each of the regular polyhedra have? Complete the following table.

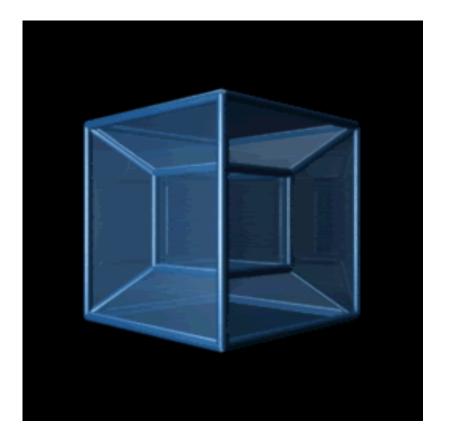
| Polyhedron   | Faces | Edges<br>per Face | Edges | Edges Meeting<br>at any Vertex | Vertices | Symmetries         |
|--------------|-------|-------------------|-------|--------------------------------|----------|--------------------|
| Tetrahedron  | 4     | 3                 | 6     | 3                              | 4        | 4 × 3 = 12         |
| Cube         | 6     | 4                 | 12    | 3                              | 8        | 6 × 4 = 24         |
| Octahedron   | 8     | 3                 | 12    | 4                              | 6        | 8 × 3 = 24         |
| Dodecahedron | 12    | 5                 | 30    | 3                              | 20       | $12 \times 5 = 60$ |
| Icosahedron  | 20    | 3                 | 30    | 5                              | 12       | 20 × 3 = 60        |

### Soccer Ball

- Otherwise known as a truncated icosahedron.
- Some faces are pentagons, some are hexagons, but they occur in a nice pattern.
- Each pentagon has 5 hexagon neighbors.
- Each hexagon has 3 pentagon neighbors and 3 hexagon neighbors, in alternating order.



### Soccer Ball


- If there are 12 pentagonal faces, how many symmetries does the soccer ball have?
- How many hexagonal faces are there?

### Hypercubes and Symmetry

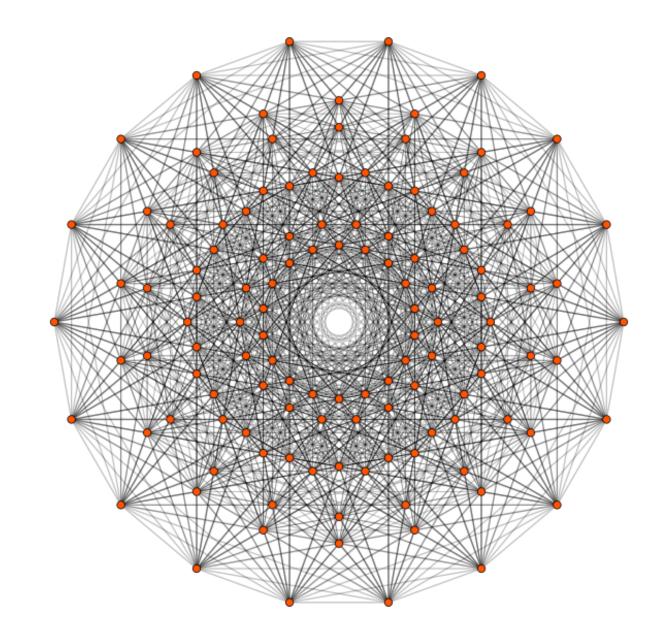
A hypercube is the four-dimensional version of a cube!

You can make one by:

- Taking two different cubes, and placing one above the other (in the fourth dimension!).
- Making new edges from each vertex in the top cube to the corresponding one in the bottom cube.
- An edge below together with the corresponding edge above and the two new edges on either side make a new square face for the hypercube.
- A face below together with the corresponding face above and the four new faces on all sides makes a cubic hyperface for the hypercube.



### Hypercubes and Symmetry


Complete this table showing the number of vertices, edges, faces, and hyperfaces on a hypercube. How many symmetries does the hypercube have?

| Shape     | Vertices | Edges | Faces (Squares) | Hyperfaces (Cubes) |
|-----------|----------|-------|-----------------|--------------------|
| Cube      | 8        | 12    | 6               | 1                  |
| Hypercube |          |       |                 |                    |

### Hypercubes and Symmetry

Complete this table showing the number of vertices, edges, faces, and hyperfaces on a hypercube. How many symmetries does the hypercube have?

| Shape     | Vertices | ces Edges Faces (Squares) |             | Hyperfaces (Cubes) |
|-----------|----------|---------------------------|-------------|--------------------|
| Cube      | 8        | 12                        | 6           | 1                  |
| Hypercube | 8+8 = 16 | 12+12+8 = 32              | 6+6+12 = 24 | 1 + 1 + 6 = 8      |

