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Part 1

UNIVARIATE STABLE
DISTRIBUTIONS






1

Basic Properties of Univariate Stable
Distributions

Stable distributions are a rich class of probability distributions that allow skewness and
heavy tails and have many intriguing mathematical properties. The class was characterized
by Paul Lévy in his study of sums of independent identically distributed terms in the 1920’s.
The lack of closed formulas for densities and distribution functions for all but a few stable
distributions (Gaussian, Cauchy and Lévy, see Figure 1.1), has been a major drawback to
the use of stable distributions by practitioners. There are now reliable computer programs
to compute stable densities, distribution functions and quantiles. With these programs, it is
possible to use stable models in a variety of practical problems.

This book describes the basic facts about univariate and multivariate stable distributions,
with an emphasis on practical applications. Part I focuses on univariate stable laws. This
chapter describes basic properties of univariate stable distributions. Chapter 2 gives exam-
ples of stable laws arising in different problems. Chapter 3 gives proofs of the results in
this chapter, as well as more technical details about stable distributions. Chapter 4 descri-
bes methods of fitting stable models to data. This structure is continued in Part II, which
concerns multivariate stable laws. Chapters 5, 6, and 8 give basic facts about multivari-
ate stable distributions, proofs and technical results, and estimation respectively. Part III
is about stable regression, stable times series, and general stable processes. At the end of
the book, Part IV describes related distributions and the appendices give tables of stable
quantiles, modes and asymptotic standard deviations of maximum likelihood estimators of
stable parameters.

Stable distributions have been proposed as a model for many types of physical and econo-
mic systems. There are several reasons for using a stable distribution to describe a system.
The first is where there are solid theoretical reasons for expecting a non-Gaussian stable
model, e.g. reflection off a rotating mirror yielding a Cauchy distribution, hitting times for
a Brownian motion yielding a Lévy distribution, the gravitational field of stars yielding the
Holtsmark distribution; see Feller (1971) and Uchaikin and Zolotarev (1999) for these and
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other examples. The second reason is the Generalized Central Limit Theorem which states
that the only possible non-trivial limit of normalized sums of independent identically distri-
buted terms is stable. It is argued that some observed quantities are the sum of many small
terms - the price of a stock, the noise in a communication system, etc. and hence a stable
model should be used to describe such systems. The third argument for modeling with sta-
ble distributions is empirical: many large data sets exhibit heavy tails and skewness. The
strong empirical evidence for these features combined with the Generalized Central Limit
Theorem is used by many to justify the use of stable models. Examples in finance and
economics are given in Mandelbrot (1963), Fama (1965), Samuelson (1967), Roll (1970),
Embrechts et al. (1997), Rachev and Mittnik (2000), McCulloch (1996); in communication
systems by Stuck and Kleiner (1974), Zolotarev (1986), and Nikias and Shao (1995). Such
data sets are poorly described by a Gaussian model, but can be well described by a stable
distribution.

Several recent monographs focus on stable models: Zolotarev (1986), Uchaikin and Zo-
lotarev (1999), Christoph and Wolf (1992), Samorodnitsky and Taqqu (1994), Janicki and
Weron (1994), and Nikias and Shao (1995). The related topic of modeling with the extre-
mes of data and heavy tailed distributions is discussed in Embrechts et al. (1997), Adler
et al. (1998), and in Reiss and Thomas (2001).

1.1 Definition of stable

An important property of normal or Gaussian random variables is that the sum of two of
them is itself a normal random variable. One consequence of this is that if X is normal, then
for X; and X, independent copies of X and any positive constants a and b,

aXi +bXoLeX +d, (1.1)

for some positive ¢ and some d € R. (The symbol 2 means equality in distribution, i.e.
both expressions have the same probability law.) In words, equation (1.1) says that the
shape of X is preserved (up to scale and shift) under addition. This book is about the class
of distributions with this property.

Definition 1.1 A random variable X is stable or stable in the broad sense if for X; and X»
independent copies of X and any positive constants a and b, (1.1) holds for some positive
c and some d € R. The random variable is strictly stable or stable in the narrow sense if
(1.1) holds with d = 0 for all choices of a and b. A random variable is symmetric stable if

it is stable and symmetrically distributed around 0, e.g. X 4 _x.

The addition rule for independent normal random variables says that the mean of the
sum is the sum of the means and the variance of the sum is the sum of the variances.
Suppose X ~ N(u,6?), then the terms on the left hand side above are N(au, (ac)?) and
N(bu, (bc)?) respectively, while the right hand side is N(cu +d, (co)?). By the addition
rule one must have ¢? = a®+b? and d = (a+b —c)u. Expressions for ¢ and d in the general
stable case are given below.

The word stable is used because the shape is stable or unchanged under sums of the type
(1.1). Some authors use the phrase sum stable to emphasize the fact that (1.1) is about a sum
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and to distinguish between these distributions and max-stable, min-stable, multiplication
stable and geometric stable distributions (see Chapter 13). Also, some older literature used
slightly different terms: stable was originally used for what we now call strictly stable,
quasi-stable was reserved for what we now call stable.

Two random variables X and Y are said to be of the same type if there exist constants
A>0and Be R with X iAY + B. The definition of stability can be restated as aX; + bX»
has the same type as X.

There are three cases where one can write down closed form expressions for the den-
sity and verify directly that they are stable - normal, Cauchy and Lévy distributions. The
parameters ¢ and 3 mentioned below are defined in Section 1.3.

Example 1.2 Normal or Gaussian distributions. X ~ N(u, 62) if it has a density

2
p(<“>) o x <o,

202

flx) =

2no

The cumulative distribution function, for which there is no closed form expression, is
F(x) =P(X <x) =®((x—u)/o), where ®(z) = probability that a standard normal r.v. is
less than or equal z. Problem 1.1 shows a Gaussian distribution is stable with parameters
a=2,5=0. O

Example 1.3 Cauchy distributions. X ~ Cauchy(y, 8) if it has density

1 Y
These are also called Lorentz distributions in physics. Problem 1.2 shows a Cauchy distri-
bution is stable with parameters o = 1, § = 0 and Problem 1.3 gives the d.f. of a Cauchy
distribution. O

Example 1.4 Lévy distributions. X ~ Lévy(7,d) if it has density

f(x)—\/z(x_g)mexp<—2(xi§)>, S < x < oo

Note that some authors use the term Lévy distribution for all sum stable laws; we shall only
use it for this particular distribution. Problem 1.4 shows a Lévy distribution is stable with
parameters ¢ = 1/2, B = 1 and Problem 1.5 gives the d.f. of a Lévy distribution. O

Figure 1.1 shows a plot of these three densities. Both normal distributions and Cauchy
distributions are symmetric, bell-shaped curves. The main qualitative distinction between
them is that the Cauchy distribution has much heavier tails, see Table 1.1. In particular,
there is a tiny amount of probability above 3 for the normal distribution, but a significant
amount above 3 for a Cauchy. In a sample of data from these two distributions, there will
be (on average) approximately 100 times more values above 3 in the Cauchy case than in
the normal case. This is the reason stable distributions are called heavy tailed. In contrast
to the normal and Cauchy distributions, the Lévy distribution is highly skewed, with all
of the probability concentrated on x > 0, and it has even heavier tails than the Cauchy.
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0.5

—— normal
- - Cauchy
© Levy

0.4

0.3

()
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|

0.1

Figure 1.1: Graphs of standardized normal N(0, 1), Cauchy(1,0) and Lévy(1,0) densities.

¢ P(X >¢)
Normal Cauchy | Lévy

0 | 0.5000 0.5000 | 1.0000
1| 0.1587 0.2500 | 0.6827
2 | 0.0228 0.1476 | 0.5205
3| 0.001347 0.1024 | 0.4363
4 | 0.00003167 0.0780 | 0.3829
5 | 0.0000002866 | 0.0628 | 0.3453

Table 1.1: Comparison of tail probabilities for standard normal, Cauchy and Lévy distribu-
tions.

General stable distributions allow for varying degrees of tail heaviness and varying degrees
of skewness.

Other than the normal distribution, the Cauchy distribution, the Lévy distribution, and the
reflection of the Lévy distribution, there are no known closed form expressions for general
stable densities and it is unlikely that any other stable distributions have closed forms for
their densities. Zolotarev (1986) (pg. 155-158) shows that in a few cases stable densities or
distribution functions are expressible in terms of certain special functions. This may seem
to doom the use of stable models in practice, but recall that there is no closed formula
for the normal cumulative distribution function. There are tables and accurate computer
algorithms for the standard normal distribution function, and people routinely use those
values in normal models. We now have computer programs to compute quantities of interest
for stable distributions, so it is possible to use them in practical problems.
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1.2 Other definitions of stability

There are other equivalent definitions of stable random variables. Two are stated here, the
proofs of the equivalence of these definitions are given in Section 3.1.

Definition 1.5 Non-degenerate X is stable if and only if for all n > 1, there exist constants
¢, > 0 and d,, € R such that

X+ +Xnicnx+dna

where X1,...,X, are independent, identical copies of X. X is strictly stable if and only if
d, = 0 for all n.

Section 3.1 shows that the only possible choice for the scaling constants is ¢, = n'/® for
some & € (0,2]. Both the original definition of stable and the one above use distributional
properties of X, yet another distributional characterization is given by the Generalized Cen-
tral Limit Theorem, Theorem 1.20. While useful, these conditions do not give a concrete
way of parameterizing stable distributions. The most concrete way to describe all possi-
ble stable distributions is through the characteristic function or Fourier transform. (For a
random variable X with distribution function F(x), the characteristic function is defined
by ¢ (u) = Eexp(iuX) = [*_exp(iux)dF (x). The function ¢ (u) completely determines the
distribution of X and has many useful mathematical properties, see Appendix A.) The sign
function is used below, it is defined as

-1 u<0
signu:{o u=0
1 u>0.

In the expression below for the & = 1 case, 0-1og 0 is always interpreted as lim, o xlogx = 0.

Definition 1.6 A random variable X is stable if and only if X iaZ +b, where 0 < o < 2,
—1<B<1,a#0,beRandZis arandom variable with characteristic function

o Jexp(—|u|*[1 —iPtan 22 (signu)]) a #1
Eexp(iuz) = {exp(—|u| [14iB2(signu)log|ul]) a=1. 1.2)

These distributions are symmetric around zero when 8 = 0 and b = 0, in which case the
characteristic function of aZ has the simpler form

9u) =",
Problems 1.1, 1.2 and 1.4 show that a N(u, 62) distribution is stable with (& =2, =0,a =

6/+v/2,b = ), a Cauchy(y, §) distribution is stable with (o« = 1, = 0,a = y,b = §) and
a Lévy(y, 6) distribution is stable with (¢ = 1/2,8 =1,a=y,b = 9).

1.3 Parameterizations of stable laws

Definition 1.6 shows that a general stable distribution requires four parameters to describe:
an index of stability or characteristic exponent & € (0,2], a skewness parameter € [—1, 1],
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a scale parameter and a location parameter. We will use ¥ for the scale parameter and 6 for
the location parameter to avoid confusion with the symbols ¢ and u, which will be used
exclusively for the standard deviation and mean. The parameters are restricted to the range
o €(0,2],B €[—1,1],y>0and § € R. Generally y > 0, although y = 0 will sometimes be
used to denote a degenerate distribution concentrated at 6 when it simplifies the statement
of a result. Since o and 3 determine the form of the distribution, they may be considered
shape parameters.

There are multiple parameterizations for stable laws and much confusion has been cau-
sed by these different parameterizations. The variety of parameterizations is caused by a
combination of historical evolution, plus the numerous problems that have been analyzed
using specialized forms of the stable distributions. There are good reasons to use different
parameterizations in different situations. If numerical work or fitting data is required, then
one parameterization is preferable. If simple algebraic properties of the distribution are
desired, then another is preferred. If one wants to study the analytic properties of strictly
stable laws, then yet another is useful. This section will describe three parameterizations;
in Section 3.4 eight others are described.

In most of the recent literature, the notation Sy (0, B, 1) is used for the class of stable
laws. We will use a modified notation of the form S(a, 8,7, d;k) for three reasons. First,
the usual notation singles out & as different and fixed. In statistical applications, all four
parameters (@, 3,7, 0) are unknown and need to be estimated; the new notation emphasizes
this. Second, the scale parameter is not the standard deviation (even in the Gaussian case),
and the location parameter is not generally the mean. So we use the neutral symbols y
for the scale (not 6) and O for the location (not u). And third, there should be a clear
distinction between the different parameterizations; the integer k does that. Users of stable
distributions need to state clearly what parameterization they are using, this notation makes
it explicit.

Definition 1.7 A random variable X is S(a, 3,7, 8;0) if

d|y(Z—Btan%)+6 o #1

_{yZ—i—S a=1" (1.3)

where Z = Z(o, ) is given by (1.2). X has characteristic function

i) — Jexp (=72 [ul® [1+ B (tan 5 ) (signu) |y =% — 1)] +idu) @ #1
Eexp(iuX) {exp(}/|u|[1+i[3,2r(signu)log(y|u|)]+i6u) o= ](1 .

When the distribution is standardized, i.e. scale ¥ = 1, and location § = 0, the symbol
S (e, B;0) will be used as an abbreviation for S(a, 3,1,0;0).

Definition 1.8 A random variable X is S (o, 8,7, 8;1) if

xi{YZ‘LS a#l

Y2+ (8+B2ylogy) a=1, (1.5)

where Z = Z(o, ) is given by (1.2). X has characteristic function

oy Jexp(—y*|u|*[1 —iB(tan Z2)(signu)] +idu) o #1
Eexp(iuX) = {exp(—y|u| [1+iB2(signu)log|u|] +idu) a=1. (1.6)
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When the distribution is standardized, i.e. scale ¥ = 1, and location 6 = 0, the symbol
S (e, B;1) will be used as an abbreviation for S (a, 3,1,0;1).

Above we defined the general stable law in the O-parameterization and 1-parameterization
in terms of a standardized Z ~ S (a, B; 1). Alternatively, we could start with Zy ~ S (e, 8;0),
in which case

YZo+6 ~S(a,B,7,6;0)
and 515 )
YZo+0+Pytan® o £l .
{Yzo+5+ﬁ,2[}/logy a=1 S(e,B,7,6:1).

Since the density of Z is continuous with respect to x, &, and f3, this makes it clear how
the 1-parameterization is not continuous as & — 1 (because of the tan(zwo/2) term) and
not a scale location family when a = 1 (because the ylogy term). Note that if f = 0,
then the 0- and 1-parameterizations are identical, but when  # 0 the asymmetry factor
(the imaginary term in the characteristic function) becomes an issue. The symbol SasS is
used as an abbreviation for symmetric a-stable. When a scale parameter is used, SaS(y) =
S(e,0,7,0;0) =S (e,0,7,0;1).

The different parameterizations have caused repeated misunderstandings. Hall (1981a)
describes a “comedy of errors” caused by parameterization choices. The most common
mistake concerns the sign of the skewness parameter when o = 1. Zolotarev (1986) briskly
switches between half a dozen parameterizations. Another example is the stable random
number generator of Chambers et al. (1976) which has two arguments: o and 3. Most users
expect to get a S (a, B; 1) result, however, the routine actually returns random variates with
aS(a,B;0) distribution. One book even excludes the cases § # 0 when ot = 1.

In principle, any choice of scale and location is as good as any other choice. We re-
commend using the S (a, 8,7, 8;0) parameterization for numerical work and statistical in-
ference with stable distributions: it has the simplest form for the characteristic function
that is continuous in all parameters. See Figure 1.2 for plots of stable densities in the 0-
parameterization. It lets @ and B determine the shape of the distribution, while y and &
determine scale and location in the standard way: if X ~ S(a, 3,7, 6;0), then (X —9)/y ~
S(a,3,1,0;0). This is not true for the S (e, 8,7, 0; 1) parameterization when ot = 1.

On the other hand, if one is primarily interested in a simple form for the characteris-
tic function and nice algebraic properties, the S(a, 8,7, 0; 1) parameterization is favored.
Because of these properties, this is the most common parameterization in use and we will
generally use it when we are proving facts about stable distributions. The main practical
disadvantage of the S (a, 8,7, §; 1) parameterization is that the location of the mode is un-
bounded in any neighborhood of o = 1: if X ~ S(,f3,7,0;1) and B > 0, then the mode
of X tends to 4+ as o 1 1 and tends to —eo as & | 1. Moreover, the S(a, 3,7,0;1) para-
meterization does not have the intuitive properties desirable in applications (continuity of
the distributions as the parameters vary, a scale and location family, etc.). See Figure 1.3
for densities in the 1-parameterization and Section 3.2.2 for more information on modes.

When o =2, a S(2,0,7,6,0) =S(2,0,7,8;1) distribution is normal with mean J, but
the standard deviation is not y. Because of the way the characteristic function is defined
above, S(2,0,7,8;0) =N(8,27?), so the normal standard deviation ¢ = v/27. This fact is
a frequent source of confusion when one tries to compare stable quantiles when @ = 2 to
normal quantiles. This complication is not inherent in the properties of stable laws; it is
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Figure 1.2: Stable densities in the S(,0.5,1,0;0) parameterization, o
0.5,0.75,1,1.25,1.5.
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Figure 1.3: Stable densities in the S(,0.5,1,0;1) parameterization, o
0.5,0.75,1,1.25,1.5.
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Figure 1.4: Stable densities in the S (&, 0.5;2) parameterization, & = 0.5,0.75,1,1.25,1.5.

a consequence of the way the parameterization has been chosen. The 2-parameterization
mentioned below rescales to avoid this problem, but the above scaling is standard in the
literature. Also, when o = 2, B is irrelevant because then the factor tan(mo/2) = 0. While
you can allow any 8 € [—1, 1], it is customary take 3 = 0 when & = 2; this emphasizes that
the normal distribution is always symmetric.

Since multiple parameterizations are used for stable distributions, it is perhaps worthw-
hile to ask if there is another parameterization where the scale and location parameter have
a more intuitive meaning. Section 3.4 defines the S (o, 8,7, 0;2) parameterization so that
the location parameter is at the mode and the scale parameter agrees with the standard scale
parameters in the Gaussian and Cauchy cases. While technically more cumbersome, this
parameterization may be the most intuitive for applications. In particular, it is useful in sig-
nal processing and in linear regression problems when there is skewness. Figure 1.4 shows
plots of the densities in this parameterization.

A stable distribution can be represented in any one of these or other parameterizations.
For completeness, Section 3.4 lists eleven different parameterizations that can be used,
and the relationships of these to each other. We will generally use the S(a, 8,7, 0;0) and
S(a,B,7,8;1) parameterizations in what follows to avoid (or at least limit) confusion. In
these two parameterizations, @, 3 and the scale y are always the same, but the location
parameters will have different values. The notation X ~ S (a, B, v, 6:;k) for k =0, 1 will be
shorthand for X ~ S(a, f,7,00;0) and X ~ S(a, 3,7, 6;;1) simultaneously. In this case,
the parameters are related by (see Problem 1.9)

o1+ BytanZ a#1 [ oo—PBytanZ a#1
50_{51+ﬁivlogv a=1 o = G —PBiylogy a=1 147
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In particular, note that in (1.2), Z(ct,) ~ S(e,8,1,Btan%2;0) = S(a,3,1,0;1) when
o#1and Z(1,B8) ~S(1,B,1,0;0) =S(1,B,1,0;1) when o = 1.

1.4 Densities and distribution functions

While there are no explicit formulas for general stable densities, a lot is known about their
theoretical properties. The most basic fact is the following.

Theorem 1.9 All (non-degenerate) stable distributions are continuous distributions with
an infinitely differentiable density.

To distinguish between the densities and cumulative distribution functions in different
parameterizations, f(x|a,f,7,0;k) will denote the density and F (x|, B, 7, 8;k) will de-
note the d.f. of a S(a, 3,7, 8;k) distribution. When the distribution is standardized, i.e.
scale y =1, and location § = 0, f(x|a, B;k) will be used for the density, and F (x|a, 8;k)
will be used for the d.f..

Since all stable distributions are shifts and scales of some Z ~ S (o, 8;0), we will focus
on those distributions here. The computer program STABLE, using algorithms described in
Section 3.3, was used to compute the probability density functions (pdf) and (cumulative)
distribution functions (d.f.) below to illustrate the range of shapes of these distributions.

Stable densities are supported on either the whole real line or a half line. The latter
situation can only occur when @ < 1 and (8 = +1 or B = —1). Precise limits are given by
the following lemma.

Lemma 1.10 The support of a stable distribution in the different parameterizations is

0—ytan™ o) o <landf =1

[

support f (x|, B,7,8;0) = (-0, 0 +7ytan22] a<landf =—1
(—o0,+o0) otherwise
[6,00) a<land B =1

support f(x|et, B,7,8;1) = { (—,8] oa<landf=-1
(—o0,40) otherwise

The constant tan Z* appears frequently when working with stable distributions, so it is
worth recording its behavior. As o 1 1, tan Z* 1 4-co, the expression is undefined at o =1,
and when o | 1, tan Z* | —oo. This essential discontinuity at &¢ = 1 is sometimes a nuisance
when working with stable distributions, but here it is natural: if || = 1 then as @ 1 1, the
support in Lemma 1.10 grows to R in a natural way.

Another basic fact about stable distributions is the reflection property.

Proposition 1.11 Reflection Property. For any @ and 3, Z ~ S (o, B;k), k=0,1,2

Z(a,~B)L—z(a, B).

Thus the density and distribution function of a Z(a, B) random variable satisfy f(x|a, B;k) =
f(—=x|o,—B;k) and F (x|, B;k) = 1 — F(—x|ot, — B k).

More generally, if X ~S (o, B,7,0;k), then —X ~S (o, —B,y,—0;k), so f(x|o, B,7,8:k) =
f(=x|a,—B,y,—6;k) and F (x|o, B,7,0:k) = 1 — F(—x|ot,—B,y,—8:k).
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Figure 1.5: Symmetric stable densities and cumulative distribution functions for Z ~
S(e,0;0), &« =0.7,1.3,1.9.

First consider the case when 8 = 0. In this case, the reflection property says f(x|a,0;k) =
f(—x|e,0;k), so the density and d.f. are symmetric around 0. Figure 1.5 shows the bell-
shaped density of symmetric stable distributions. As & decreases, three things occur to
the density: the peak gets higher, the region flanking the peak get lower, and the tails get
heavier. The d.f. plot shows how as & decreases, the tail probabilities increase.

If B > 0, then the distribution is skewed with the right tail of the distribution heavier
than the left tail: P(X > x) > P(X < —x) for large x > 0. (Here and later, statements about
the tail of a distribution will always refer to large |x|, nothing is implied about |x| small.)
When 3 = 1, we say the stable distribution is zofally skewed fo the right. By the reflection
property, the behavior of the < 0 cases are reflections of the § > 0 ones, with left tail
being heavier. When 8 = —1, the distribution is fotally skewed to the left.

When a = 2, the distribution is a (non-standardized) normal distribution. Note that

tanZ* = 0 in (1.2) so the characteristic function is real and hence the distribution is al-

ways symmetric, no matter what the value of 8. In symbols, Z(2, ﬁ)iZ (2,0). In general,

as a 1 2, all stable distributions get closer and closer to being symmetric and 3 becomes
less meaningful in applications (and harder to estimate accurately).

Figure 1.6 shows the density and d.f. when a = 1.9, with varying 3, and there is little
visible difference as § varies. As o decreases, the effect of B becomes more pronounced:
the left tail gets lighter and lighter for § > 0, see Figure 1.7 (@ = 1.3), Figure 1.8 (ot =0.7),
and Figure 1.9 (o = 0.2). The last figure shows that when o approaches 0, the density gets
extremely high at the peak, and the d.f. gets closer and closer to a degenerate distribution
(see Section 3.2 for more information on this topic). As Lemma 1.10 shows, the light tail
actually is O after some point when o < 1 and || = 1.
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Figure 1.6: Stable densities and cumulative distribution functions for Z ~ S (1.9, 3;0), 8 =
0,0.5,1.

Finally, all stable densities are unimodal, but there is no known formula for the location
of the mode. However, the mode of a Z ~ S(a, 8;0) distribution, denoted by m(ct, ), has
been numerically computed. The values of m(c,3) are shown for > 0 in Figure 1.10
and a table of modes is given in Appendix C. By the reflection property, m(a,—f) =
—m(a, B). Numerically, it is also observed that P(Z > m(c,3)) > P(Z < m(o,3)) (more
mass to the right of the mode) when B > 0, P(Z > m(a,B)) = P(Z < m(a,)) = 1/2
when 3 = 0, and by reflection P(Z > m(ct,3)) < P(Z < m(ct,3)) when B < 0 (more mass
to the left of the mode). Note that these statements are all in the O-parameterization, not the
1-parameterization. See Section 3.2.2 for more information about modes.

1.5 Tail probabilities, moments and quantiles

When o = 2, the normal distribution has well understood asymptotic tail properties. Here
we give a brief discussion of the tails of non-Gaussian (& < 2) stable laws, see Section 3.5
for more information. For o < 2, stable distributions have one tail (when @ < 1 and f8 =
41) or both tails (all other cases) that are asymptotically power laws with heavy tails. The
statement A(x) ~ g(x) as x — @ means lim,_,, h(x)/g(x) = 1.

Theorem 1.12 Tail approximation. LetX ~S (o, ,7,0;0) withO< o <2, -1 <B < 1.
Then as x — oo,

P(X>x) ~ Y%cq(1+B)x“
flxloe, B,y.8:0) ~ ay®cq(l+p)x (@Y
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Figure 1.7: Stable densities and cumulative distribution functions for Z ~ S (1.3, 3;0), 8 =
0,0.5,1.

where cq = sin(%2)['(a)/m. Using the reflection property, the lower tail properties are
similar: for —1 < f3 <1, as x — oo

POXC<—2) ~ Ficall- Py
f(_x|avﬁa%6;0) ~ (X'}’aCa(l—ﬁ)x_(oH_l).

For all ¢ <2 and —1 < 8 < 1, both tail probabilities and densities are asymptotically
power laws. When 8 = —1, the right tail of the distribution is not asymptotically a power
law; likewise when B = 1, the left tail of the distribution is not asymptotically a power
law. The point at which the tail approximation becomes useful is a complicated issue, it
depends on both the parameterization and the parameters (o, f3,7,0). See Section 3.5 for
more information on both of these issues.

Pareto distributions (see Problem 1.10) are a class of probability laws with upper tail
probabilities given exactly by the right hand side of Theorem 1.12. The term stable Paretian
laws is used to distinguish between the fast decay of the Gaussian law and the Pareto like
tail behavior in the o < 2 case.

One consequence of heavy tails is that not all moments exist. In most statistical problems,
the first moment EX and variance Var(X) = E(X?) — (EX)? are routinely used to describe a
distribution. However, these are not generally useful for heavy tailed distributions, because
the integral expressions for these expectations may diverge. In their place, it is sometimes
useful to use fractional absolute moments: E|X|? = [ |x|” f(x)dx, where p is any real
number. Some review on moments and fractional moments is given in Appendix A. Pro-
blem 1.11 shows that for 0 < o < 2, E|X|? is finite for 0 < p < ¢, and that E|X|? = 4o
for p > o. Explicit formulas for moments of strictly stable laws are given in Section 3.6.
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Figure 1.8: Stable densities and cumulative distribution functions for Z ~ S (0.7, 3;0), B =
0,0.5,1.

Thus, when 0 < & < 2, E|X|?> = EX? = 4o and stable distributions do not have finite
second moments or variances. This fact causes some to immediately dismiss stable distri-
butions as being irrelevant to any practical problem. Section 2.13 discusses this in more
detail. When 1 < a < 2, E|X| < e and the mean of X is given below. On the other hand,
when o < 1, E|X| = +oo, so means are undefined.

Proposition 1.13 When 1 < a <2, the mean of X ~S(a, B,v, 6;k) fork=0,1is
U =EX =20, = 8 —Bytan 2.

Consider what happens to the mean of X ~ S (o, 3;0) as « | 1. Even though the mode
of the distribution stays close to 0, it has a mean of u = —f tan Z¢. When 8 = 0, the distri-
bution is symmetric and the mean is always 0. When 8 > 0, the mean tends to 4oo because
while both tails are getting heavier, the right tail is heavier than the left. By reflection, the
B < 0 case has u | —oo. Finally, when « reaches 1, the tails are too heavy for the integral
EX = [%_xf(x)dx to converge. In contrast, a S (¢, 3;1) distribution keeps the mean at 0
by shifting the whole distribution by an increasing amount as ¢ | 1. For example, when
1 < o < 2, Theorem 3.16 shows that F(0|a, 1;1) = 1 /a, which convergesupto 1 as a | 1.
In these cases, most of the probability is to the left of zero, and only a tiny amount is to
the right of zero, yet the mean is still zero because of the very slow decay of the right tail.
The behavior is essentially the same for any > 0. A S(«, 3;2) distribution keeps the
mode exactly at 0, and the mean as a function of (a, ) is continuous, like the mean of a
S (e, B;0) distribution.

Note that the skewness parameter f3 is not the same thing as the classical skewness para-
meter. The latter is undefined for every non-Gaussian stable distribution because neither the
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Figure 1.9: Stable densities and cumulative distribution functions for Z ~ S (0.2, ;0), B =
0,0.5, 1. Note that both the horizontal and vertical scales are very different from Figures 1.6
-1.8.

third moment or the variance exist. Likewise, the kurtosis is undefined, because the fourth
moment is undefined for every non-Gaussian stable distribution.

It is sometimes useful to consider non-integer moments of stable distributions. In Section 3.6
it will be shown that for 0 < p < a, the p-th absolute moment exists: E|X|? < co. Such mo-
ments are sometimes called fractional lower order moments (FLOM). When X is strictly
stable there is an explicit form for such moments. Such moments can be used as a measure
of dispersion of a stable distribution, and are used in some estimation schemes.

Tables of standard normal quantiles or percentiles are given in most basic probability and
statistic books. Let z; be the A" quantile, i.e. the z value for which the standard normal
distribution has lower tail probability A, i.e. P(Z < z; ) = A. The value z¢ 975 = 1.96 is com-
monly used: for X ~ N(u,6?), the 0.025"" quantile is g — 1.966 and the 0.975"" quantile is
W+ 1.960. Quantiles are used to quantify risk. For example, in a Gaussian/normal model
for the price of an asset, the interval from yu — 1.960 to u 4 1.960 contains 95% of the
distribution of the asset price.

Quantiles of the standard stable distributions are used in the same way. The difficulty
is that there are different quantiles for every value of ¢ and 8. The symbol z; (a, ) will
be used for the A" quantile of a S («, 8;0) distribution: P(Z < z; (o, )) = A. The easiest
way to find these values is to use the program STABLE. Less accurately, one can use
the tabulated values in Appendix B and interpolate on the o and 8 values. Appendix B
shows selected quantiles for @=0.1, 0.2,..., 1.9, 1.95, 1.99, 2.0 and =0, 0.1, 0.2,...,0.9, 1.
(Reflection can be used for negative beta: by Proposition 1.11, zy (o, B) = z1_3 (o, —B)).

We caution the reader about two ways that stable quantiles are different from normal
quantiles. First, if the distribution is not symmetric, i.e. 8 # 0, then the quantiles are not
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Figure 1.10: The location of the mode of a S (¢, 3;0) density.

symmetric. Second, the way the quantiles scale depend on what parameterization is being
used. In the S («, 3,7, 8;0) parameterization, it is straightforward; in other parameteriza-
tions one has to either convert to the S (e, 8,7, §;0) parameterization using (1.7), or scale
and shift according to the definition of each parameterization. These issues are illustrated
in the following examples.

Example 1.14 Find the 5 and 95" quantiles for X ~ S(1.3,0.5,2,7;0). From Appen-
dix B, the 5" quantile is z0s5(1.3,0.5) = —2.355 and the 95" quantile is z9.05(1.3,0.5) =
+5.333 for a standardized S (1.3,0.5,1,0;0) distribution. So the corresponding quantiles
for X are 6 —2.355y=2.289 and & +5.333y = 17.666. O

Example 1.15 If X ~ S(1.3,0.5,2,7;1), then using the previous example, the 5 and
95" quantiles are y(—2.355) + (8 + Bytan 22) = 0.327 and ¥(5.333) + (8 + Bytan 22) =
15.704. Alternatively, S(1.3,0.5,2,7;1) = S(1.3,0.5,2,5.037;0) by (1.7), so the 5" and
95" quantiles are 2(—2.355) +5.037 = 0.327 and 2(5.333) +5.037 = 15.704. O

1.6  Sums of stable random variables

A basic property of stable laws is that sums of a-stable random variables are o-stable.
In the independent case, the exact parameters of the sums are given below. As always,
the results depend on the parameterization used. In these results it is essential that the
summands all have the same o, as Problem 1.12 shows that otherwise the sum will not be
stable. Section 13.9 discusses this issue briefly. When the summands are dependent, the sum
is stable but the precise statement is more difficult and depends on the exact dependence
structure; this is explained in Section 5.5.
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Proposition 1.16 The S («, 3,7, §;0) parameterization has the following properties.
(a) If X ~S(a,B,7,8;0), then forany a # 0, b € R,

aX +b~S(o,(signa)B, |a|y,ad + b;0).

(b) The characteristic functions, densities and distribution functions are jointly continuous
in all four parameters (o, y,,8) and in x.

(c) If X; ~S(a,Bi,%,01;0) and X ~ S(o, B2, 7, 02;0) are independent, then X; + X, ~
S(a,B,7,8;0) where

B+ By B
81+ &+ (tan %) [By — Biyi — Boa] o1

6:
81 +68+2[Bylogy—Bivilogy — Paplogp] a=1.

The formula y* = ¥ 4 75" in (c) is the generalization of the rule for adding variances
of independent random variables: 6% = 612 + 622. It holds for both parameterizations. Note
that one adds the o' power of the scale parameters, not the scale parameters themselves.

Proposition 1.17 The S («, 3,7, 8;1) parameterization has the following properties.
(a) If X ~S(a,B,7,8;1), thenforanya #0, b € R,

aX +b S (o, (signa)pB, |a|y,ad +b;1) o#1
S(1,(signa)p,|aly,ad +b— 2Byaloglal;1) a=1.

(b) The characteristic functions, densities and distribution functions are continuous away

Jrom o = 1, but discontinuous in any neighborhood of o = 1.

(c) If X1 ~S(o,B1,71,01;1) and X, ~ S(@, B2, 7, 02; 1) are independent, then X| + X, ~
S(e,B,v,8;1) where

B - By + By
w+y

The corresponding results for the S (o, 8,7, 0;2) parameterization are given in Proposi-
tion 3.43.

Part (a) of the above results shows that ¥ and 6 are standard scale and location parame-
ters in the S (e, 3,7, 0;0) parameterization, but not in the S («, 8,7, 0; 1) parameterization
when a = 1. In contrast, part (b) shows that the location parameter 6 of a sum is the sum of
the location parameters ; + &, only in the S (e, 8,7, 0; 1) parameterization. Unfortunately
there is no parameterization that has both properties.

In the symmetric case, i.e. B; = B> = 0, both the previous propositions are simpler to
state: if X; ~ S(a,0,71,81;k) and X, ~ S(,0,7, 8;k) (with k =0 or k = 1), then X +
Xo ~S(0,0,7,8;k) with y* = y* + & and 0 = ) + &. This is exactly like the normal
case: if X; ~N(u1,067) and X, ~N(ip, 67) and independent, then X; +X, ~N(u, 6%) where
o2 =o0?+0}and =y + .

Py, =8 +6.
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By induction (see Problem 1.13), one gets formulas for sums of n stable random vari-
ables: for X; ~ S(a,B},7;,0;;k), j = 1,2,...,n independent and arbitrary wy,...,w,, the
sum

wiXi +waXo+ -+ wpX, ~S(a,B,7,0:k) (1.3)
where

n

Y Iwivil“

<
|

j=1
B o= Yo Bj(signw;)|wjv;|*
/ya
Y, widj+tan % (By—Y; Bjw;v)) k=00 #1
s - J Ljwidi+2(Brlogy—X;Bw;yiloglw;yl) k=0,a=1
L,;w;jd; k=1,00# 1
Yjwibi— 2% Bjw,vjlog|w;l k=1l,a=1.

Note that if §; = 0 for all j, then § =0 and 6 =} ;w;5;. An important case is the sca-
ling property for stable random variables: when the terms are independent and identically
distributed, say X; ~ S (o, B,7, 8;k), then

X+ +X, ~S<a,ﬁ,n1/“y,5,,;k) (1.9)
where

nd +yB2nlogn k=0,a=1

5 {n6+yﬁtan@“(n1/“n) k=000 # 1
nd k=1.

This is a restatement of Definition 1.5: the shape of the sum of n terms is the same as the
original shape. We stress that no other distribution has this property.

With the above properties of linear combinations of stable random variables, we can
characterize strict stability.

Proposition 1.18 Let X ~S(a, 3,7, 0 k) for k=0, 1.
(a) If o # 1, then X is strictly stable if and only if 6; = 6y — Bytan Z¢ = 0.
(b) If ¢ = 1, then X is strictly stable if and only if B = 0.

Here there is an essential difference between the o = 1 case and all other cases. When
o = 1, only the symmetric case is strictly stable and in that case the location parameter &
can be anything. In contrast, when a # 1, any 3 can be strictly stable, as long as the location
parameter is chosen correctly. This can be rephrased as follows: any stable distribution with
o # 1 can be made strictly stable by shifting; when @ = 1, a symmetric stable distribution
with any shift is strictly stable and no shift can make a nonsymmetric 1-stable distribution
strictly stable.

In addition to the basic properties described above, there are other linear and nonlinear
properties of stable random variables given in Section 3.8.
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1.7 Simulation

In this section U, Uy, U, will be used to denote independent Uniform(0,1) random variables.
For a few special cases, there are simple ways to generate stable random variables.
For the normal case, Problem 1.15 shows

X, = u+o+/—2logUicos2nl, (1.10)
X, = u+o+/—2logU;sin2nl,
give two independent N(u, 6?) random variables. This is known as the Box-Muller algo-

rithm.
For the Cauchy case, Problem 1.16 shows

X =vytan(n(U —1/2))+ 6 (1.11)
is Cauchy(y, 8).
For the Lévy case, Problem 1.17 shows

1
X:/}/?+6 (1.12)

is Lévy(y, ) if Z ~N(0,1).
In the general case, the following result of Chambers et al. (1976) gives a method for
simulating any stable random variate.

Theorem 1.19 Simulating stable random variables Let ® and W be independent with ©
uniformly distributed on (—%, %), W exponentially distributed with mean 1, 0 < o < 2.
(a) The symmetric random variable

sina® [cos((a—1)0) (1-0)/a
Z= a#1
(cos®)1/a w
tan® a=1.
has a S(,0;0) =S (a,0;1) distribution.
(b) In the nonsymmetric case, for any —1 < B <1, define 6y = arctan(ftan(wr/2))/a
when o # 1. Then

sino (6 + @) cos(aBy+ (a—1)0) (1-a)/a i
7 — ) (cosaBycos®)!/* w
W cos®
|5+ poyano- plog (1122 a1,

has a S (a, B;1) distribution.

It is easy to get ® and W from independent Uniform(0,1) random variables U; and
Uy: set ® = (U — %) and W = —logU,. To simulate stable random variables with ar-
bitrary shift and scale, (1.3) is used for the O-parameterization and (1.5) is used for the 1-
parameterization. Since there are numerical problems evaluating the expressions involved
when « is near 1, the STABLE program uses an algebraic rearrangement of the formula.
Section 3.3.3 gives a proof of this formula and a discussion of the numerical implementa-
tion of Chambers et al. (1976).
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1.8 Generalized Central Limit Theorem and Domains of
Attraction

The classical Central Limit Theorem says that the normalized sum of independent, identical
terms with a finite variance converges to a normal distribution. To be more precise, let
X1,X>2,X3,... be independent identically distributed random variables with mean y and
variance 6. The classical Central Limit Theorem states that the sample mean X, = (X1 +
-+ X,)/n will have
Xn— u
o/vn

To match the notation in what follows, this can be rewritten as

457 ~N(0,1) as n — oo,

an(X1 + -+ Xp) — by—25Z ~N(0,1) as 1 — , (1.13)

where a, = 1/(0+/n) and b, = \/np/c.
The Generalized Central Limit Theorem shows that if the finite variance assumption is
dropped, the only possible resulting limits are stable.

Theorem 1.20 Generalized Central Limit Theorem A nondegenerate random variable Z
is o-stable for some 0 < o0 <2 if and only if there is an independent, identically distributed
sequence of random variables X1, X, X3, ... and constants a, > 0, b, € R with

d
an(X1+---+Xy) —by—Z.
The following definition is useful in discussing convergence of normalized sums.

Definition 1.21 A random variable X is in the domain of attraction of Z if there exists
constants a,, > 0, b, € R with

an(Xi + -+ Xp) —bp—Z,

where X|,X», X3, ... are independent identically distributed copies of X. DA(Z) is the set of
all random variables that are in the domain of attraction of Z.

Theorem 1.20 says that the only possible nondegenerate distributions with a domain of
attraction are stable. Section 3.13 proves the Generalized Central Limit Theorem, charac-
terizes the distributions in DA(Z) in terms of their tail probabilities, and gives information
about the norming constants a, and b,,. For example, suppose X is a random variable with
tail probabilities that satisfy x*P(X > x) — ¢ and x*P(X < —x) — ¢~ as x — oo, with
¢t +c¢” >0and 1 < o < 2. Then u = EX must be finite and Theorem 3.58 shows that the
analog of (1.13) is

an(Xy + -+ Xp) — by—3Z ~ S (a1, B, 1,0; 1) as n — oo,
when a, = ((2I'(a) sin(22)) /(w(c™ —ﬁ—c’)))l/a n V% b, =nappand B = (¢t —c7)/(ct+

¢™). In this case, the rate at which of the tail probabilities of X decay determines the index
o and the relative weights of the right and left tail determine the skewness 3.
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1.9 Problems

Problem 1.1 Show directly using the convolution formula (A.1) that the normal distri-
butions are stable. Show that a® + b = ¢? in (1.1), so o = 2. Conclude that N(u,0?) =

S (2,o,o/ﬁ,u;0) =S (2,0,0/\@#; 1) and S (2,0;7,8;0) =S (2,0;7,8;1) = N(8,292).

Problem 1.2 Show directly using the convolution formula that the Cauchy distributions
are stable. Show that a+b = ¢ in (1.1), so o« = 1 and conclude that Cauchy(y,d) =
§(1,0,7,8;0) = S(1,0,7,8:1).

Problem 1.3 Show that the cumulative distribution function of a Cauchy distribution is
F(x]1,0,7,6:0) = F(x]1,0,7,6:1) = (1/2) + arctan((x — 6)/7) /7.

Problem 1.4 Show directly using the convolution formula that Lévy distributions are sta-
ble. Show that a'/> +b'/2 = ¢/ in (1.1), so & = 1/2 and conclude that Lévy(y,8) =
§(1/2,1,7,6:1) =8(1/2,1,7,6 +7,0).

Problem 1.5 Show that the cumulative distribution function of a Lévy distribution X ~
S(1/2,1,7,8;1) is, for x > &

F(x]1/2,1,7,8:1) =2 (1 —cI>( 7/ (x— 6))) :
where ®(x) is the d.f. of a standard normal distribution.

Problem 1.6 What is wrong with the following argument? If X;,...,X, ~Gamma(a, f3)
are independent, then X +- - - +X,, ~Gamma(nc, 3), so gamma distributions must be stable
distributions.

Problem 1.7 Use the characteristic function (1.2) to show that Z(a, —f3 )i

proves Proposition 1.11.

—Z(at,B). This

Problem 1.8 Use the definitions of the different parameterizations and the characteristic
function (1.2) to show that the characteristic functions in (1.4) and (1.6) are correct.

Problem 1.9 Show that the conversions between the parameterizations in (1.7) are correct.
(Use either the characteristic functions in (1.4) and (1.6) or the definitions of the paramete-
rizations in terms of Z(a, 8).)

Problem 1.10 A Pareto(c, ¢) (o > 0 and ¢ > 0) distribution has density f(x) = otc®x~(1+®),
x > c. Show that if p < a, then EX? exists and find its value, but if p > a, then EX? = co.

Problem 1.11 Extend the previous problem to show that if X is any random variable with
a bounded density for which both left and right tail densities are asymptotically equivalent
to Pareto(a, ¢), then E|X|? is finite if p < o and infinite if p > . (The left tail is defined
to be asymptotically Pareto if £(x) ~ ac®|x|~(1*®) as x — —o0.)

Problem 1.12 Show that the sum of two independent stable random variables with dif-
ferent s is not stable. Section 13.9 gives a brief discussion of what happens when you
combine different indices of stability.
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Problem 1.13 Derive (1.8) and (1.9) for the sums of independent o-stable r.v.

Problem 1.14 Simulate n = 1,000 uniform random variables and let s% be the sample
variance of the first k values. A “running sample variance” plot is a graph of (k,s,%),
k=2,3,4,...,n. Repeat the process with normal random variables, Cauchy random va-
riables and Pareto random variables (see Section 13.1 for a method of simulating Pareto
distributions) with & = 0.5, 1, 1.5. Contrast the behavior of si.

Problem 1.15 Show directly that (1.10) gives independent N(u, 62). Theorem 1.19 also
works when o = 2 to generate normal random variates, but it requires two uniforms to
generate one normal, whereas (1.10) generates two normals from two uniforms.

Problem 1.16 Use the cumulative distribution function for a Cauchy(y,d) distribution
from Problem 1.3 to prove (1.11).

Problem 1.17 Use Problem 1.5 to prove (1.12).



