Ultrasonic Vocalization (USV) Detector

December 21, 2016

David Barker from the National Institute on Drug Abuse Intramural Research Program has shared the following regarding the development of a device designed to allow the automatic detection of 50kHz ultrasonic vocalizations.


Ultrasonic vocalizations (USVs) have been utilized to infer animals’ affective states in multiple research paradigms including animal models of drug abuse, depression, fear or anxiety disorders, Parkinson’s disease, and in studying neural substrates of reward processing. Currently, the analysis of USV data is performed manually, and thus time consuming.

The present method was developed in order to allow for the automated detection of 50-kHz ultrasonic vocalizations using a template detection procedure. The detector runs in XBAT, an extension developed for MATLAB developed by the Bioacoustics Research Program at Cornell University. The specific template detection procedure for ultrasonic vocalizations along with a number of companion tools were developed and tested by our laboratory. Details related to the detector’s performance can be found within our published work and a detailed readme file is published along with the MATLAB package on our GitHub.

Our detector was designed to be freely shared with the USV research community with the hope that all members of the community might benefit from its use. We have included instructions for getting started with XBAT, running the detector, and developing new analysis tools. We encourage users that are familiar with MATLAB to develop and share new analysis tools. To facilitate this type of collaboration, all files have been shared as part of a GitHub repository, allowing for suggested changes or novel contribution to be made to the software package. I would happily integrate novel analysis tools created by others into future releases of the detector.

Work on a detector for 22-kHz vocalizations is ongoing; the technical challenges for detecting 22-kHz vocalizations, which are nearer to audible noise, are more difficult. Those interested in contributing to this can email me at djamesbarker@gmail-dot-com or find me on twitter (@DavidBarker_PhD).


Leave a Reply

Your email address will not be published. Required fields are marked *