Category: Behavioral Apparatus

DIY Rodent Running Disk

February 6, 2018 

Brian Isett, who is now at Carnegie Mellon, has kindly shared the following tutorial regarding the creation and implementation of a Rodent Running Disk he designed while at University of California, Berkeley.

“Awake, naturalistic behavior is the gold standard for many neuroscience experiments.  Increasingly, researchers using the mouse model system strive to achieve this standard while also having more control than a freely moving animal. Using head-fixation, a mouse can be positioned very precisely relative to ongoing stimuli, but often at the cost of naturalism. One way to overcome this problem is to use the natural running of the mouse to control stimulus presentation in a closed-loop “virtual navigation” environment. This combination allows for awake, naturalistic behavior, with the added control of head-fixation. A key element of this paradigm is to have a very fast way of decoding mouse locomotion.
In this tutorial, we describe using an acrylic disk mounted to an optical encoder to achieve fast locomotion decoding. Using an Arduino to decode the TTL pulses coming from the optical encoder, real-time, closed-loop stimuli can be easily presented to a head-fixed mouse. This ultimately allowed us to present tactile gratings to a mouse performing a whisker-mediated texture discrimination task as a “virtual foraging task” — tactile stimuli moved past the whiskers synchronously with mouse locomotion. But the design is equally useful for measuring mouse running position and speed in a very precise way.”

The tutorial may be found here.

Isett, B.R., Feasel, S.H., Lane, M.A., and Feldman, D.E. (2018). Slip-Based Coding of Local Shape and Texture in Mouse S1. Neuron 97, 418–433.e5.

MAPLE: a Modular Automated Platform for Large-Scale Experiments

January 8th, 2018 
The de Bivort lab and FlySorter, LLC are happy to share on OpenBehavior their open-source Drosophila handling platform, called MAPLE: Modular Automated Platform for Large-Scale Experiments.

Drosophila Melanogaster has proven a valuable genetic model organism due to the species’ rapid reproduction, low-maintenance, and extensive genetic documentation. However, the tedious chore of handling and manually phenotyping remains a limitation with regards to data collection. MAPLE: a Modular Automated Platform for Large-Scale Experiments provides a solution to this limitation.

MAPLE is a Drosophila-handing robot that boasts a modular design, allowing the platform to both automate diverse phenotyping assays and aid with lab chores (e.g., collecting virgin female flies). MAPLE permits a small-part manipulator, a USB digital camera, and a fly manipulator to work simultaneously over a platform of flies. Failsafe mechanisms allow users to leave MAPLE unattended without risking damage to MAPLE or the modules.

The physical platform integrates phenotyping and animal husbandry to allow end-to-end experimental protocols. MAPLE features a large, physically-open workspace for user convenience. The sides, top, and bottom are made of clear acrylic to allow optical phenotyping at all time points other than when the end-effector carriages are above the modules. Finally, the low cost and scalability allow large-scale experiments ($3500 vs hundreds of thousands for a “fly-flipping” robot).

MAPLE’s utility and versatility were demonstrated through the execution of two tasks: collection of virgin female flies, and a large-scale longitudinal measurement of fly social networks and behavior.

Links to materials:

CAD files

Control Software

Raw data and analysis scripts 

De Bivort Lab Site 


ArControl: Arduino Control Platform

January 3rd, 2018

The following behavioral platform was developed and published by Xinfeng Chen and Haohong Li, from Huazhong University of Science and Technology, Wuhan, China

ArControl: Arduino Control Platform is a comprehensive behavioral platform developed to deliver stimuli and monitor responses. This easy-to-use, high-performance system uses an Arduino UNO board and a simple drive circuit along with a stand-along GUI application. Experimental data is automatically recorded with the built-in data acquisition function and the entire behavioral schedule is stored within the Arduino chip. Collectively, this makes ArControl a “genuine, real-time system with high temporal resolution”. Chen and Li have tested ArControl using a Go/No-Go task and a probabilistic switching behavior task. The results of their work show that ArControl is a reliable system for behavioral research.

Source codes and PCB drafts may be found here: ArControl Github




November 28, 2017

Airtrack was developed in LARKUM Lab by Mostafa Nashaat, Hatem Oraby, Robert Sachdev, York Winter and Matthew Larkum. Alexander Schill, engineer at Charité workshop (CWW) had a significant contribution to the design of the platform and the airtrack table.

Airtrack is a head-fixed behavioral environment that uses a lightweight physical maze floating on an air table that moves around the animal’s body under the direct control of the animal itself, solving many problems associated with using virtual reality for head-fixed animals.

Illustrative Image of the Airtrack

More Information can be found at

Nashaat, MA, Oraby, H, Sachdev, RNS, Winter, Y, Larkum, ME. (2016).
Air-Track: a real-world floating environment for active sensing in head-fixed mice.
Journal of Neurophysiology 116 (4) 1542-1553; DOI:10.1152/jn.00088.2016

Autonomous Training of a Forelimb Motor Task

November 3, 2017

Greg Silas, from the University of Ottawa, has kindly contributed the following to OpenBehavior.

“Silasi et al developed a low-cost system for fully autonomous training of group housed mice on a forelimb motor task. We demonstrate the feasibility of tracking both end-point as well as kinematic performance of individual mice, each performing thousands of trials over 2.5 months. The task is run and controlled by a Raspberry Pi microcomputer, which allows for cages to be monitored remotely through an active internet connection.”

Click here to submit a piece of open-source software or hardware to OpenBehavior.

Syringe Pump – Pearce Research Group

In their 2014 paper “Open-Source Syringe Pump Library,” Bas Wijnen, Emily Hunt, Gerald Anzalone, and Joshua Pearce detail an open-source syringe pump apparatus developed in their lab, as well as, validate the performance of the device. The authors write, “This syringe pump was designed using freely available open-source computer aided design (CAD) software and manufactured using an open-source RepRap 3-D printer and readily available parts. The design, bill of materials and assembly instructions are globally available to anyone wishing to use them on the Open-source syringe pump Approdepia page… The cost of the entire system, including the controller and web-based control interface, is on the order of 5% or less than one would expect to pay for a commercial syringe pump having similar performance. The design should suit the needs of a given research activity requiring a syringe pump including carefully controlled dosing of reagents, pharmaceuticals, and delivery of viscous 3-D printer media among other applications.”

Pearce Research group also provides an Open Source Lab page dedicated to low-cost, open-source lab hardware.

Wijnen, Bas; Hunt, Emily; Anzalone, Gerald; Pearce, Joshua (2014). Open-Source Syringe Pump Library. PLoS ONE, 9(9), e107216.

Feeding Experimentation Device (FED)

WP_20160320_003Feeding Experimentation Device (FED) is a home cage-compatible feeding system that measures food intake with high accuracy and temporal resolution. FED offers a low-cost alternative (~$350) to commercial feeders, with the convenience of use in tradition colony rack caging.

In their 2016 paper, “Feeding Experimentation Device (FED): A flexible open-source device for measuring feeding behavior,” Katrina P. Nguyen, Timothy J. O’Neal, Olurotimi A. Bolonduro, Elecia White, and Alexxai V. Kravitz validate the reliability of food delivery and precise measurement of feeding behavior provided by FED, as well as, demonstrate the application of FED in an experiment examining light and dark-cycle feeding trends, and another measuring optogenetically-evoked feeding.


KravitzLab has shared the Arduino scripts for controlling FED, as well as, the python code used to analyze the feeding data collected by FED on the KravitzLab Github. Additionally, build instructions and power considerations are detailed on the FED Wiki page and 3D Design Files provided through TinkerCAD.

Nguyen, Katrina; O’Neal, Timothy; Bolonduro, Olurotimi; White, Elecia; Kravitz, Alexxai (2016). Feeding Experimentation Device (FED): A flexible open-source device for measuring feeding behavior. J Neurosci Methods, 267:108-14.