Category: Other

Upcoming Posters and Talks at SfN 2018

October 31, 2018

At the upcoming Society for Neuroscience meeting in San Diego, there will be a number of posters and talks that highlight novel devices and software that have implications for behavioral neuroscience. If you’re heading to the meeting, be sure to check them out! Relevant posters and talks are highlighted in the document, available at the following link: https://docs.google.com/document/d/12XqODhW14K2drCCEARVESoqqE0KrSjksZKN40xURVmk/edit?usp=sharing

OpenBehavior Feedback Survey

We are looking for your feedback to understand how we can better serve the community! We’re also interested to know if/how you’ve implemented some of the open-source tools from our site in your own research.

We would greatly appreciate it if you could fill out a short survey (~5 minutes to complete) about your experiences with OpenBehavior.

https://american.co1.qualtrics.com/jfe/form/SV_0BqSEKvXWtMagqp

Thanks!

Collaboration between OpenBehavior and Hackaday.io

July 23, 2018

OpenBehavior has been covering open-source neuroscience projects for a few years, and we are always thrilled to see projects that are well documented and can be easily reproduced by others.  To further this goal, we have formed a collaboration with Hackaday.io, who have provided a home for OpenBehavior on their site.  This can be found at: https://hackaday.io/OpenBehavior, where we currently have 36 projects listed ranging from electrophysiology to robotics to behavior.  We are excited about this collaboration because it provides a straightforward way for people to document their projects with instructions, videos, images, data, etc.  Check it out, see what’s there, and if you want your project linked to the OpenBehavior page simply tag it as “OPENBEHAVIOR” or drop us a line at the Hackaday page.

Note: This collaboration between OpenBehavior and Hackaday.io is completely non-commercial, meaning that we don’t pay Hackaday.io for anything, nor do we receive any payments from them.  It’s simply a way to further our goal of promoting open-source neuroscience tools and their goal of growing their science and engineering community.


https://hackaday.io/OpenBehavior

 

Article in Nature on monitoring behavior in rodents

An interesting summary of recent methods for monitoring behavior in rodents was published this week in Nature.The article mentions Lex Kravitz and his lab’s efforts on the Feeding Experimentation Device (FED) and also OpenBehavior. Check it out:  https://www.nature.com/articles/d41586-018-02403-5

MAPLE: a Modular Automated Platform for Large-Scale Experiments

January 8th, 2018 
The de Bivort lab and FlySorter, LLC are happy to share on OpenBehavior their open-source Drosophila handling platform, called MAPLE: Modular Automated Platform for Large-Scale Experiments.

Drosophila Melanogaster has proven a valuable genetic model organism due to the species’ rapid reproduction, low-maintenance, and extensive genetic documentation. However, the tedious chore of handling and manually phenotyping remains a limitation with regards to data collection. MAPLE: a Modular Automated Platform for Large-Scale Experiments provides a solution to this limitation.

MAPLE is a Drosophila-handing robot that boasts a modular design, allowing the platform to both automate diverse phenotyping assays and aid with lab chores (e.g., collecting virgin female flies). MAPLE permits a small-part manipulator, a USB digital camera, and a fly manipulator to work simultaneously over a platform of flies. Failsafe mechanisms allow users to leave MAPLE unattended without risking damage to MAPLE or the modules.

The physical platform integrates phenotyping and animal husbandry to allow end-to-end experimental protocols. MAPLE features a large, physically-open workspace for user convenience. The sides, top, and bottom are made of clear acrylic to allow optical phenotyping at all time points other than when the end-effector carriages are above the modules. Finally, the low cost and scalability allow large-scale experiments ($3500 vs hundreds of thousands for a “fly-flipping” robot).

MAPLE’s utility and versatility were demonstrated through the execution of two tasks: collection of virgin female flies, and a large-scale longitudinal measurement of fly social networks and behavior.

Links to materials:

CAD files

Control Software

Raw data and analysis scripts 

De Bivort Lab Site