Category: Reward Delivery


March 1, 2018

From the Kravitz lab at the NIH comes a simple device for dispensing pre-measured quantities of food at regular intervals throughout the day.  Affectionately known as “SnackClock”, this device uses a 24-hour clock movement to rotate a dispenser wheel one revolution per day.  The wheel contains 12 compartments, which allows the device to dispense 12 pre-measured “snacks” at regular 2 hour intervals.  The Kravitz lab has used this device to dispense high-fat diet throughout the day, rather than giving mice one big piece once per day.  The device is very simple to build and use, requiring just two 3D printed parts and a ~$10 clock movement.  There is no microcontroller or coding required for this device, and it runs on one AA battery for >1 year.  The 3D files are supplied and can be edited to fit SnackClock in different brands of caging, or to adjust the number of snack compartments.  With additional effort the clock movement could be replaced by a stepper motor to allow for dispensing at irregular or less frequent intervals.


Article in Nature on monitoring behavior in rodents

An interesting summary of recent methods for monitoring behavior in rodents was published this week in Nature.The article mentions Lex Kravitz and his lab’s efforts on the Feeding Experimentation Device (FED) and also OpenBehavior. Check it out:

ArControl: Arduino Control Platform

January 3rd, 2018

The following behavioral platform was developed and published by Xinfeng Chen and Haohong Li, from Huazhong University of Science and Technology, Wuhan, China

ArControl: Arduino Control Platform is a comprehensive behavioral platform developed to deliver stimuli and monitor responses. This easy-to-use, high-performance system uses an Arduino UNO board and a simple drive circuit along with a stand-along GUI application. Experimental data is automatically recorded with the built-in data acquisition function and the entire behavioral schedule is stored within the Arduino chip. Collectively, this makes ArControl a “genuine, real-time system with high temporal resolution”. Chen and Li have tested ArControl using a Go/No-Go task and a probabilistic switching behavior task. The results of their work show that ArControl is a reliable system for behavioral research.

Source codes and PCB drafts may be found here: ArControl Github



Syringe Pump – Pearce Research Group

In their 2014 paper “Open-Source Syringe Pump Library,” Bas Wijnen, Emily Hunt, Gerald Anzalone, and Joshua Pearce detail an open-source syringe pump apparatus developed in their lab, as well as, validate the performance of the device. The authors write, “This syringe pump was designed using freely available open-source computer aided design (CAD) software and manufactured using an open-source RepRap 3-D printer and readily available parts. The design, bill of materials and assembly instructions are globally available to anyone wishing to use them on the Open-source syringe pump Approdepia page… The cost of the entire system, including the controller and web-based control interface, is on the order of 5% or less than one would expect to pay for a commercial syringe pump having similar performance. The design should suit the needs of a given research activity requiring a syringe pump including carefully controlled dosing of reagents, pharmaceuticals, and delivery of viscous 3-D printer media among other applications.”

Pearce Research group also provides an Open Source Lab page dedicated to low-cost, open-source lab hardware.

Wijnen, Bas; Hunt, Emily; Anzalone, Gerald; Pearce, Joshua (2014). Open-Source Syringe Pump Library. PLoS ONE, 9(9), e107216.

Feeding Experimentation Device (FED)

WP_20160320_003Feeding Experimentation Device (FED) is a home cage-compatible feeding system that measures food intake with high accuracy and temporal resolution. FED offers a low-cost alternative (~$350) to commercial feeders, with the convenience of use in tradition colony rack caging.

In their 2016 paper, “Feeding Experimentation Device (FED): A flexible open-source device for measuring feeding behavior,” Katrina P. Nguyen, Timothy J. O’Neal, Olurotimi A. Bolonduro, Elecia White, and Alexxai V. Kravitz validate the reliability of food delivery and precise measurement of feeding behavior provided by FED, as well as, demonstrate the application of FED in an experiment examining light and dark-cycle feeding trends, and another measuring optogenetically-evoked feeding.


KravitzLab has shared the Arduino scripts for controlling FED, as well as, the python code used to analyze the feeding data collected by FED on the KravitzLab Github. Additionally, build instructions and power considerations are detailed on the FED Wiki page and 3D Design Files provided through TinkerCAD.

Nguyen, Katrina; O’Neal, Timothy; Bolonduro, Olurotimi; White, Elecia; Kravitz, Alexxai (2016). Feeding Experimentation Device (FED): A flexible open-source device for measuring feeding behavior. J Neurosci Methods, 267:108-14.