Tag: homecage


In a recently published article (Erskine et al., 2019), The Schaefer lab at the Francis Crick Institute introduced their new open-source project called AutonoMouse.

AutonoMouse is a fully automated, high-throughput system for self-initiated conditioning and behavior tracking in mice. Many aspects of behavior can be analyzed through having rodents perform in operant conditioning tasks. However, in operant experiments, many variables can potentially alter or confound results (experimenter presence, picking up and handling animals, altered physiological states through water restriction, and the issue that rodents often need to be individually housed to keep track of their individual performances). This was the main motivation for the authors to investigate a way to completely automate operant conditioning. The authors developed AutonoMouse as a fully automated system that can track large numbers (over 25) of socially-housed mice through implanted RFID chips on mice. With the RFID trackers and other analyses, the behavior of mice can be tracked as they train and are subsequently tested on (or self-initiate testing in) an odor discrimination task over months with thousands of trials performed every day. The novelty in this study is the fully automated nature or the entire system (training, experiments, water delivery, weighing the animals are all automated) and the ability to keep mice socially-housed 24/7, all while still training them and tracking their performance in an olfactory operant conditioning task. The modular set-up makes it possible for AutonoMouse to be used to study many other sensory modalities, such as visual stimuli or in decision-making tasks. The authors provide a components list, layouts, construction drawings, and step-by-step instructions for the construction and use of AutonoMouse in their publication and on their project’s github.

For more details, check out this youtube clip interview with Andreas Schaefer, PI on the project.


The github for the project’s control software is located here: https://github.com/RoboDoig/autonomouse-control and for the project’s design and hardware instructions is here: https://github.com/RoboDoig/autonomouse-design. The schedule generation program is located here: https://github.com/RoboDoig/schedule-generator


April 17, 2019

In a recent Nature Protocol’s article, Edoardo Balzani and colleagues from Valter Tucci’s lab have developed and shared Phenopy, a Python-based open-source analytical platform for behavioral phenotyping.

Behavioral phenotyping of mice using classic methods can be a long process and is susceptible to high variability, leading to inconsistent results. To reduce variance and speed up to process of behavioral analysis, Balzani et al. developed Phenopy, an open-source software for recording and analyzing behavioral data for phenotyping. The software allows for recording components of a behavioral task in combination with electrophysiology data. It is capable of performing online analysis as well as analysis of recorded data on a large scale, all within a user-friendly interface. Information about the software is available in their publication, available from Nature Protocols.*

Check out the full article from Nature Protocols!

(*alternatively available on ResearchGate)


February 20, 2019

Francisco Romero Ferrero and colleagues have developed idtracker.ai, an algorithm and software for tracking individuals in large collectives of unmarked animals, recently described in Nature Methods.

Tracking individual animals in large collective groups can give interesting insights to behavior, but has proven to be a challenge for analysis. With advances in artificial intelligence and tracking software, it has become increasingly easier to collect such information from video data. Ferrero et al. have developed an algorithm and tracking software that features two deep networks. The first tracks animal identification and the second tracks when animals touch or cross paths in front of one another. The software has been validated to track individuals with high accuracy in cohorts of up to 100 animals with diverse species from rodents to zebrafish to ants. This software is free, fully-documented and available online with additional jupyter notebooks for data analysis.

Check out their website with full documentation, the recent Nature Methods article, BioRXiv preprint, and a great video of idtracker.ai tracking 100 zebrafish!

PsiBox: Automated Operant Conditioning in the Mouse Home Cage

November 30, 2018

Nikolas Francis and Patrick Kanold of the University of Maryland share their design for Psibox, a platform for automated operant conditioning in the mouse home cage, in Frontiers in Neural Circuits.

The ability to collect behavioral data from large populations of subjects is advantageous for advancing behavioral neuroscience research. However, few cost-effective options are available for collecting large sums of data especially for operant behaviors. Francis and Kanold have developed and shared Psibox,  an automated operant conditioning system. It incorporates three modules for central control , water delivery, and home cage interface, all of which can be customized with different parts. The system was validated for training mice in a positive reinforcement auditory task and can be customized for other tasks as well. The full, low-cost system allows for quick training of groups of mice in an operant task with little day-to-day experimenter involvement.

Learn how to set up your own Psibox system here!

Francis, NA., Kanold, PO., (2017). Automated operant conditioning in the mouse home cage. Front. Neural Circuits.