Tag: Recording Devices

UCLA Miniscope Project

Daniel Aharoni of the Golshani, Silva, and Khakh Lab at UCLA has shared the following about Miniscope:

This open source miniature fluorescence microscope uses wide-field fluorescence imaging to record neural activity in awake, freely behaving mice. The Miniscope has a mass of 3 grams and uses a single, flexible coaxial cable (0.3mm to 1.5mm diameter) to carry power, control signals, and imaging data to open source Data Acquisition (DAQ) hardware and software. Miniscope.org provides a centralized location for sharing design files, source code, and other relevant information so that a community of users can share ideas and developments related to this important imaging technique. Our goal is to help disseminate this technology to the larger neuroscience community and build a foundation of users that will continue advancing this technology and contribute back to the project. While the Miniscope system described here is not an off-the-shelf commercial solution, we have focused on making it as easy as possible for the average neuroscience lab to build and modify, requiring minimal soldering and hands on assembly.
Video demonstrating GCamp6F imaging in CA1 using the UCLA Miniscope

Automated Home-Cage Functional Imaging

Timothy Murphy and his colleagues at the University of British Columbia have developed an automated system for mesoscopic functional imaging that allows subjects to self-initiate head-fixation and imaging within the home-cage. In their 2016 paper, “High-throughput automated home-cage mesoscopic functional imaging of mouse cortex,” Dr. Murphy and his colleagues present this device and demonstrate its use with a group of calcium indicator transgenic mice. The supplementary material to this paper includes a diagram of the hardware, a graphic representation of the training cage, several videos of subjects interacting with the device and sample imaging data. The Python source code and 3D print files can be found on Dr. Murphey’s UBC webpage.

Murphy, T. H., Boyd, J. D., Bolaños, F., Vanni, M. P., Silasi, G., Haupt, D., & LeDue, J. M. (2016). High-throughput automated home-cage mesoscopic functional imaging of mouse cortex. Nature Communications, 7, 11611.