Tag: Sensors

Nose-Poke System – Kelly Tan Research Group

The Kelly Tan research group at the University of Basel, Switzerland investigates the neural correlates of motor behavior, focusing on the role of the basal ganglia in controlling various aspects of motor actions. To aid in their investigation, the group has developed an open-source nose-poke system utilizing an Arduino microcontroller, several low-cost electronic components, and a PVC behavioral arena. These researchers have shared the following information about the project:

Giorgio Rizzi, Meredith E. Lodge, Kelly R Tan.
MethodsX 3 (2016) 326-332
Operant behavioral tasks for animals have long been used to probe the function of multiple brain regions. The recent development of tools and techniques has opened the door to refine the answer to these same questions with a much higher degree of specificity and accuracy, both in biological and spatial-temporal domains. A variety of systems designed to test operant behavior are now commercially available, but have prohibitive costs. Here, we provide a low-cost alternative to a nose poke system for mice. Adapting a freely available sketch for ARDUINO boards, in combination with an in-house built PVC box and inexpensive electronic material we constructed a four-port nose poke system that detects and counts port entries.
  • We provide a low cost alternative to commercially available nose poke system.
  • Our custom made apparatus is open source and TTL compatible.
  • We validate our system with optogenetic self-stimulation of dopamine neurons in mice.

IMG_20160126_163648 IMG_20160126_163703 IMG_20160126_163714 IMG_20160126_163725 IMG_20160127_124611 IMG_20160127_124624 IMG_20160127_150643 IMG_20160127_150708


The Kelly Tan research group provides further documentation for this device, including SketchUp design files, Arduino source code, and a full bill of materials, as supplementary data in their 2016 paper.

Lickometer – Feldman Lab

unnamed1
Brian Isett, a graduate researcher in the Feldman Lab at UC Berkeley writes, “Measuring licks using a lickometer can provide an intuitive and simple signal for scientists studying many aspects of rodent behavior.  Commercial lickometers are often bulky and expensive, easily costing a few hundred dollars. In the Feldman Lab, we designed a small and inexpensive lickometer with parts costing less than $20. The lickometer employs an infrared beam and sensor to minimize electrical noise artifacts during neurophysiology experiments and can be easily mounted in a micromanipulator for precise and repeatable positioning.
 unnamed2
This open-source lickometer was designed in conjunction with an open-source water delivery system.  Together, these provide the basic hardware for a DIY behavioral assay and reward system for mice.”