Tag: social


In a recently published article (Erskine et al., 2019), The Schaefer lab at the Francis Crick Institute introduced their new open-source project called AutonoMouse.

AutonoMouse is a fully automated, high-throughput system for self-initiated conditioning and behavior tracking in mice. Many aspects of behavior can be analyzed through having rodents perform in operant conditioning tasks. However, in operant experiments, many variables can potentially alter or confound results (experimenter presence, picking up and handling animals, altered physiological states through water restriction, and the issue that rodents often need to be individually housed to keep track of their individual performances). This was the main motivation for the authors to investigate a way to completely automate operant conditioning. The authors developed AutonoMouse as a fully automated system that can track large numbers (over 25) of socially-housed mice through implanted RFID chips on mice. With the RFID trackers and other analyses, the behavior of mice can be tracked as they train and are subsequently tested on (or self-initiate testing in) an odor discrimination task over months with thousands of trials performed every day. The novelty in this study is the fully automated nature or the entire system (training, experiments, water delivery, weighing the animals are all automated) and the ability to keep mice socially-housed 24/7, all while still training them and tracking their performance in an olfactory operant conditioning task. The modular set-up makes it possible for AutonoMouse to be used to study many other sensory modalities, such as visual stimuli or in decision-making tasks. The authors provide a components list, layouts, construction drawings, and step-by-step instructions for the construction and use of AutonoMouse in their publication and on their project’s github.

For more details, check out this youtube clip interview with Andreas Schaefer, PI on the project.


The github for the project’s control software is located here: https://github.com/RoboDoig/autonomouse-control and for the project’s design and hardware instructions is here: https://github.com/RoboDoig/autonomouse-design. The schedule generation program is located here: https://github.com/RoboDoig/schedule-generator


February 20, 2019

Francisco Romero Ferrero and colleagues have developed idtracker.ai, an algorithm and software for tracking individuals in large collectives of unmarked animals, recently described in Nature Methods.

Tracking individual animals in large collective groups can give interesting insights to behavior, but has proven to be a challenge for analysis. With advances in artificial intelligence and tracking software, it has become increasingly easier to collect such information from video data. Ferrero et al. have developed an algorithm and tracking software that features two deep networks. The first tracks animal identification and the second tracks when animals touch or cross paths in front of one another. The software has been validated to track individuals with high accuracy in cohorts of up to 100 animals with diverse species from rodents to zebrafish to ants. This software is free, fully-documented and available online with additional jupyter notebooks for data analysis.

Check out their website with full documentation, the recent Nature Methods article, BioRXiv preprint, and a great video of idtracker.ai tracking 100 zebrafish!

Live Mouse Tracker

December 5, 2018

In a recent publication, Fabrice de Chaumont and colleagues share Live Mouse Tracker, a real-time behavioral analysis system for groups of mice.

Monitoring social interactions of mice is an important aspect to understand pre-clinical models of various psychiatric disorders, however, gathering data on social behaviors can be time-consuming and often limited to a few subjects at a time. With advances in computer vision, machine learning, and individual identification methods, gathering social behavior data from many mice is now easier. de Chaumont and colleagues have developed Live Mouse Tracker which allows for behavior tracking for up to 4 mice at a time with RFID sensors. The use of infrared/depth RGBD cameras allow for tracking of animal shape and posture. This tracking system automatically labels behaviors on an individual, dyadic, and group level. Live Mouse Tracker can be used to assess complex social behavioral differences between mice.

Learn more in their manuscript in Nature Biomedical Engineering (also on BioRXiv), or check out the Live Mouse Tracker website!