Enhanced Mineral Weathering Bibliography

Prepared by Wil Burns, Co-Director, Institute for Carbon Removal Law & Policy

  1. Amann, T., Hartmann, J., Struyf, E., de Oliveira Garcia, W., Fischer, E. K., Janssens, I., . . . Schoelynck, J. (2020). Enhanced Weathering and related element fluxes – a cropland mesocosm approach. Biogeosciences, 17(1), 103-119. doi: 10.5194/bg-17-103-2020
  1. Anda, M., Shamshuddin, J., & Fauziah, C. I. (2013). Increasing negative charge and nutrient contents of a highly weathered soil using basalt and rice husk to promote cocoa growth under field conditions. Soil and Tillage Research, 132(Supplement C), 1-11. doi: https://doi.org/10.1016/j.still.2013.04.005
  1. Andrews, M. G., & Taylor, L. L. (2019). Combating Climate Change Through Enhanced Weathering of Agricultural Soils. Elements, 15(4), 253-258. doi: 10.2138/gselements.15.4.253 %J Elements
  1. Antwerp, U. o. (2020). Coastal enhanced silicate weathering: Investigating the potential for CO2 drawdown in coastal environments. Retrieved from https://coastalesw.com/
  1. Artyszak, A. (2018). Effect of Silicon Fertilization on Crop Yield Quantity and Quality—A Literature Review in Europe. Plants, 7(3), 54. Retrieved from https://www.mdpi.com/2223-7747/7/3/54
  1. Arvidson, R. S., Mackenzie, F. T., & Guidry, M. (2006). MAGic: A Phanerozoic Model for the Geochemical Cycling of Major Rock-Forming Components. American Journal of Science, 306(3), 135-190. doi:10.2475/ajs.306.3.135
  1. Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S., & Renforth, P. (2019). CO2 Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems. Frontiers in Climate, 1(7). doi:10.3389/fclim.2019.00007
  1. Beerling, D. (2018). Guest post: How ‘enhanced weathering’ could slow climate change and boost crop yields. CarbonBrief. Retrieved from https://www.carbonbrief.org/guest-post-how-enhanced-weathering-could-slow-climate-change-and-boost-crop-yields
  1. Beerling, D. (2019). Can plants help us avoid a climate catastrophe? OUPblog, (May 9). Retrieved from https://blog.oup.com/2019/05/plants-help-avoid-climate-catastrophe/
  1. Beerling, D. J. (2017). Enhanced rock weathering: biological climate change mitigation with co-benefits for food security? Biology Letters, 13(4), 1-4. Retrieved from http://rsbl.royalsocietypublishing.org/content/roybiolett/13/4/20170149.full.pdf
  1. Beerling, D. J., et al. (2018). Farming with crops and rocks to address global climate, food and soil security. Nature Plants, 4, 138-147. doi: 10.1038/s41477-018-0108-y
  1. Beerling, D. J. (2019). Can plants help us avoid seeding a human-made climate catastrophe? PLANTS, PEOPLE, PLANET, 1(4), 310-314. doi: 10.1002/ppp3.10066
  1. Beerling, D. J., Kantzas, E. P., Lomas, M. R., Wade, P., Eufrasio, R. M., Renforth, P., . . . Banwart, S. A. (2020). Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature, 583(7815), 242-248. doi: 10.1038/s41586-020-2448-9
  1. Behrens, R., et al. . (2015). Mineralogical transformations set slow weathering rates in low-porosity metamorphic bedrock on mountain slopes in a tropical climate. Chemical Geology, 411, 283-298. Retrieved from http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:1263966
  1. Berner, R. A. (1997). The Rise of Plants and Their Effect on Weathering and Atmospheric CO2. 276(5312), 544-546. doi: 10.1126/science.276.5312.544 %J Science
  1. Chou, W.-C., Gong, G.-C., Hsieh, P.-S., Chang, M.-H., Chen, H.-Y., Yang, C.-Y., & Syu, R.-W. (2015). Potential impacts of effluent from accelerated weathering of limestone on seawater carbon chemistry: A case study for the Hoping power plant in northeastern Taiwan. Marine Chemistry, 168, 27-36. doi: https://doi.org/10.1016/j.marchem.2014.10.008
  1. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., et al. (2013). Carbon and other biogeochemical cycles, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 465–570.
  1. Colbourn, G., Ridgwell, A., & Lenton, T. M. (2015). The time scale of the silicate weathering negative feedback on atmospheric CO2. Global Biogeochemical Cycles, 29(5), 583-596. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/2014GB005054/pdf
  1. Cressey, D. (2014). Rock’s power to mop up carbon revisited. Nature, 505(7484), 464. Retrieved from http://www.nature.com/news/rock-s-power-to-mop-up-carbon-revisited-1.14560
  1. Das, S., Kim, G. W., Hwang, H. Y., Verma, P. P., & Kim, P. J. (2019). Cropping With Slag to Address Soil, Environment, and Food Security. Frontiers in Microbiology, 10(1320). doi: 10.3389/fmicb.2019.01320
  1. de Oliveira Garcia, W., Amann, T., Hartmann, J., Karstens, K., Popp, A., Boysen, L. R., . . . Goll, D. (2020). Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology. Biogeosciences, 17(7), 2107-2133. doi:10.5194/bg-17-2107-2020
  1. Dessert, C., Dupré, B., Gaillardet, J., François, L. M., & Allègre, C. J. (2003). Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, 202(3), 257-273. doi: https://doi.org/10.1016/j.chemgeo.2002.10.001
  1. Dietzen, C., Harrison, R., & Michelsen-Correa, S. (2018). Effectiveness of enhanced mineral weathering as a carbon sequestration tool and alternative to agricultural lime: An incubation experiment. International Journal of Greenhouse Gas Control, 74, 251-258. doi: https://doi.org/10.1016/j.ijggc.2018.05.007
  1. Drever, J. I., & Stillings, L. L. (1997). The role of organic acids in mineral weathering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 120(1), 167-181. doi:https://doi.org/10.1016/S0927-7757(96)03720-X
  1. Edwards, D. P., et al. (2017). Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture. Biology Letters, 13(4), 1-7. Retrieved from http://rsbl.royalsocietypublishing.org/content/13/4/20160715
  1. Feng, E. Y., Koeve, W., Keller, D. P., & Oschlies, A. (2017). Model-Based Assessment of the CO2 Sequestration Potential of Coastal Ocean Alkalinization. Earth’s Future, 5(12), 1252-1266. doi: 10.1002/2017EF000659
  1. Fortner, S. K., Lyons, W. B., Carey, A. E., Shipitalo, M. J., Welch, S. A., & Welch, K. A. (2012). Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-Tennessee River Basin, USA. Biogeosciences, 9(3), 941-955. doi: 10.5194/bg-9-941-2012
  1. Fountain, H. (2018). How Oman’s Rocks Could Help Save the Planet. Y. Times, Apr. 26, 2018, https://www.nytimes.com/interactive/2018/04/26/climate/oman-rocks.html
  1. Frings, P. J., & Buss, H. L. (2019). The Central Role of Weathering in the Geosciences. Elements, 15(4), 229-234. doi: 10.2138/gselements.15.4.229 %J Elements
  1. Futter, M. N. e. a. (2012). Uncertainty in silicate mineral weathering rate estimates: source partitioning and policy implications. Environmental Research Letters, 7(2), 1-8. Retrieved from http://iopscience.iop.org/article/10.1088/1748-9326/7/2/024025/pdf
  1. Gaillardet, J., Dupré, B., Louvat, P., & Allègre, C. J. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1–4), 3-30. doi: http://dx.doi.org/10.1016/S0009-2541(99)00031-5
  1. Goll, D.S., Ciais, P., Amann, T. et al. Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock. Nat. Geosci. 14, 545–549 (2021). https://doi.org/10.1038/s41561-021-00798-x
  2. Goreau, T. (2020). Rock Powder with Biorock: Synergies & Co-Benefits. Retrieved from http://www.soilcarbonalliance.org/2020/07/13/rock-powder-with-biorock-synergies-co-benefits/
  1. Griffioen, J. (2017). Enhanced weathering of olivine in seawater: The efficiency as revealed by thermodynamic scenario analysis. Science of The Total Environment, 575, 536-544. doi: http://dx.doi.org/10.1016/j.scitotenv.2016.09.008
  1. Guntzer, F., Keller, C., & Meunier, J.-D. (2012). Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32(1), 201-213. doi: 10.1007/s13593-011-0039-8
  1. Hangx, S. J. T., & Spiers, C. J. (2009). Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability. International Journal of Greenhouse Gas Control, 3(6), 757-767. doi: http://dx.doi.org/10.1016/j.ijggc.2009.07.001
  1. Hansen, J. (2018). Rock Dust in Farming: A Potential Strategy to Help Close the Climate Gap. Retrieved from http://www.columbia.edu/~jeh1/mailings/2018/20180219_RockDustInFarming_NewsRelease.pdf
  1. Haque, F., Santos, R. M., & Chiang, Y. W. (2020). CO2 sequestration by wollastonite-amended agricultural soils – An Ontario field study. International Journal of Greenhouse Gas Control, 97, 103017. doi: https://doi.org/10.1016/j.ijggc.2020.103017
  1. Haque, F., Santos, R. M., Dutta, A., Thimmanagari, M., & Chiang, Y. W. (2019). Co-Benefits of Wollastonite Weathering in Agriculture: CO(2) Sequestration and Promoted Plant Growth. ACS omega, 4(1), 1425-1433. doi: 10.1021/acsomega.8b02477
  1. Hartmann, J. (2009). Bicarbonate-fluxes and CO2-consumption by chemical weathering on the Japanese Archipelago — Application of a multi-lithological model framework. Chemical Geology, 265(3), 237-271. doi: https://doi.org/10.1016/j.chemgeo.2009.03.024
  1. Hartmann, J., et al. (2013). Enhancing Chemical Weathering as a Geoengineering Strategy to Reduce Atmospheric Carbon Dioxide, Supply Nutrients, and Mitigate Ocean Acidification. Reviews of Geophysics, 51(2), 113-149. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/rog.20004/pdf
  1. Hartmann, J., & Kempe, S. (2008). What is the maximum potential for CO2 sequestration by “stimulated” weathering on the global scale? Naturwissenschaften, 95(12), 1159-1164. doi: 10.1007/s00114-008-0434-4
  1. Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S., & Köhler, P. (2009). Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions? Global and Planetary Change, 69(4), 185-194. doi: http://dx.doi.org/10.1016/j.gloplacha.2009.07.007
  1. Hartmann, J., et al. (2013). Enhancing Chemical Weathering as a Geoengineering Strategy to Reduce Atmospheric Carbon Dioxide, Supply Nutrients, and Mitigate Ocean Acidification. Reviews of Geophysics, 51(2), 113-149. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/rog.20004/pdf
  1. Houlton, B. (2020). An effective climate change solution may lie in rocks beneath our feet. The Conversation. Retrieved from https://theconversation.com/an-effective-climate-change-solution-may-lie-in-rocks-beneath-our-feet-142462
  1. Initiative, C. D. (2020). An Interview with Professor Jelle Bijma about enhanced weathering. Retrieved from https://www.carbon-drawdown.de/blog/2020-11-15-negative-emissions-only-nature-based-solutions-can-master-the-job
  1. Initiative, C. D. (2020). Let’s do something with enhanced weathering. Retrieved from https://www.carbon-drawdown.de/blog/2020-9-14-lets-do-something-with-enhanced-weathering
  1. Initiative, C. D. (2021). Introducing “Project Carbdown”: Our first “enhanced weathering” field trial aims to remove CO₂ from the atmosphere. Retrieved from https://www.carbon-drawdown.de/blog/2021-01-14-introducing-project-carbdown
  1. Isson, T. T., & Planavsky, N. J. (2018). Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature, 560(7719), 471-475. doi: 10.1038/s41586-018-0408-4
  1. Jiang, H., & Lee, C.-T. A. (2019). On the role of chemical weathering of continental arcs in long-term climate regulation: A case study of the Peninsular Ranges batholith, California (USA). Earth and Planetary Science Letters, 525, 115733. doi: https://doi.org/10.1016/j.epsl.2019.115733
  1. Kakizawa, M., Yamasaki, A., & Yanagisawa, Y. (2001). A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid. Energy, 26(4), 341-354. doi: https://doi.org/10.1016/S0360-5442(01)00005-6
  1. Kantola, I. B., et al. (2017). Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biology Letters, 13(4), 1-7. Retrieved from http://rsbl.royalsocietypublishing.org/content/13/4/20160714
  1. Kasting, J. F. (2019). The Goldilocks Planet? How Silicate Weathering Maintains Earth “Just Right”. Elements, 15(4), 235-240. doi: 10.2138/gselements.15.4.235 %J Elements
  1. Kelland, M. E., Wade, P. W., Lewis, A. L., Taylor, L. L., Sarkar, B., Andrews, M. G., . . . Beerling, D. J. (2020). Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil. Global Change Biology, 26(6), 3658-3676. doi: 10.1111/gcb.15089
  1. Khalidy, R., & Santos, R. M. (2021). The fate of atmospheric carbon sequestrated through weathering in mine tailings. Minerals Engineering, 163, 106767. doi: https://doi.org/10.1016/j.mineng.2020.106767
  1. Kirchner, J. S., Berry, A., Ohnemüller, F., Schnetger, B., Erich, E., Brumsack, H.-J., & Lettmann, K. A. (2020). Reducing CO2 Emissions of a Coal-Fired Power Plant via Accelerated Weathering of Limestone: Carbon Capture Efficiency and Environmental Safety. Environmental Science & Technology. doi: 10.1021/acs.est.9b07009
  1. Köhler, P., et al. (2013). Geoengineering impact of open ocean dissolution of olivine on atmospheric CO 2 , surface ocean pH and marine biology. Environmental Research Letters, 8(1), 014009. Retrieved from http://stacks.iop.org/1748-9326/8/i=1/a=014009
  1. Köhler, P., Hartmann, J., & Wolf-Gladrow, D. A. (2010). Geoengineering potential of artificially enhanced silicate weathering of olivine. Proceedings of the National Academy of Sciences, 107(47), 20228-20233. doi: 10.1073/pnas.1000545107
  1. Kojima, T., Nagamine, A., Ueno, N., & Uemiya, S. (1997). Absorption and fixation of carbon dioxide by rock weathering. Energy Conversion and Management, 38, S461-S466. doi: https://doi.org/10.1016/S0196-8904(96)00311-1
  1. Komar, N., & Zeebe, R. E. (2011). Oceanic calcium changes from enhanced weathering during the Paleocene‐Eocene thermal maximum: No effect on calcium‐based proxies. Paleoceanography, 26, 1-13.
  1. Kranking, C. (2020). Scientists look to remove CO2 from atmosphere by accelerating natural Earth processes. Medill Reports Chicago. Retrieved from https://news.medill.northwestern.edu/chicago/scientists-look-to-remove-co2-from-atmosphere-by-accelerating-natural-earth-processes/
  1. Kump, L. R., Brantley, S. L., & Arthur, M. A. (2000). Chemical Weathering, Atmospheric CO2, and Climate. Annual Review of Earth and Planetary Sciences, 28(1), 611-667. doi: 10.1146/annurev.earth.28.1.611
  1. Langer, W. H., San Juan, C. A., Rau, G., & Caldeira, K. (2009). Accelerated weathering of limestone for CO2 mitigation: Opportunities for the stone and cement industries. Mining Engineering, 61(2), 27-32. Retrieved from https://www.researchgate.net/profile/Ken_Caldeira/publication/283868780_Accelerated_weathering_of_limestone_for_CO2_mitigation_Opportunities_for_the_stone_and_cement_industries/links/56a9486108ae2df821651f60/Accelerated-weathering-of-limestone-for-CO2-mitigation-Opportunities-for-the-stone-and-cement-industries.pdf?origin=publication_detail
  1. Lawford-Smith, H., & Currie, A. (2017). Accelerating the carbon cycle: the ethics of enhanced weathering. Biology Letters, 13(4), 1-6. Retrieved from http://rsbl.royalsocietypublishing.org/content/13/4/20160859
  1. Leahy, S. (2019). Earth’s rocks can absorb a shocking amount of carbon: here’s how. National Geographic. Retrieved from https://www.nationalgeographic.com/science/2019/10/earth-rocks-can-absorb-shocking-amount-of-carbon/
  1. Lefebvre, D., Goglio, P., Williams, A., Manning, D. A. C., de Azevedo, A. C., Bergmann, M., . . . Smith, P. (2019). Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: A case study for Sao Paulo State, Brazil. Journal of Cleaner Production, 233, 468-481. doi: https://doi.org/10.1016/j.jclepro.2019.06.099
  1. Lehmann, J., & Possinger, A. (2020). Removal of atmospheric CO2 by rock weathering holds promise for mitigating climate change. Nature, 583(July 9), 204-205. Retrieved from https://www.nature.com/articles/d41586-020-01965-7
  1. Leonardos, O. H., Fyfe, W. S., & Kronberg, B. I. (1987). The Use of Ground Rocks in Laterite Systems – An Improvement to the Use of Conventional Soluble Fertilizers. Chemical Geology, 60, 360-370. Retrieved from https://ac.els-cdn.com/0009254187901434/1-s2.0-0009254187901434-main.pdf?_tid=3f723c0c-c82c-11e7-a0c1-00000aab0f27&acdnat=1510547982_5a416823fd78844e4195de111cd3bcc2
  1. Li, G., Hartmann, J., Derry, L. A., West, A. J., You, C.-F., Long, X., . . . Chen, J. (2016). Temperature dependence of basalt weathering. Earth and Planetary Science Letters, 443, 59-69. doi: https://doi.org/10.1016/j.epsl.2016.03.015
  1. Li, S.-L., Calmels, D., Han, G., Gaillardet, J., & Liu, C.-Q. (2008). Sulfuric acid as an agent of carbonate weathering constrained by δ13CDIC: Examples from Southwest China. Earth and Planetary Science Letters, 270(3), 189-199. doi: https://doi.org/10.1016/j.epsl.2008.02.039
  1. Liu, Z., Macpherson, G. L., Groves, C., Martin, J. B., Yuan, D., & Zeng, S. (2018). Large and active CO2 uptake by coupled carbonate weathering. Earth-Science Reviews, 182, 42-49. doi: https://doi.org/10.1016/j.earscirev.2018.05.007
  1. Maher, K., et al. (2016). A spatially resolved surface kinetic model for forsterite dissolution. Geochimica Et Cosmochimica Acta, 174, 313-334. Retrieved from http://www.sciencedirect.com/science/article/pii/S0016703715006535?via%3Dihub
  1. Manning, D. A. C., & Renforth, P. (2013). Passive Sequestration of Atmospheric CO2 through Coupled Plant-Mineral Reactions in Urban soils. Environmental Science & Technology, 47(1), 135-141. Retrieved from http://pubs.acs.org/doi/abs/10.1021/es301250j
  1. Maroto-Valer, M. M., Fauth, D. J., Kuchta, M. E., Zhang, Y., & Andrésen, J. M. (2005). Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Processing Technology, 86(14), 1627-1645. doi: https://doi.org/10.1016/j.fuproc.2005.01.017
  1. Mason, J. (2013). Understanding the long-term carbon cycle : weathering of rocks – a vitally important carbon-sink. SkepticalScience. Retrieved from https://www.skepticalscience.com/weathering.html
  1. Matter, J. M., Broecker, W. S., Stute, M., Gislason, S. R., Oelkers, E. H., Stefánsson, A., . . . Björnsson, G. (2009). Permanent Carbon Dioxide Storage into Basalt: The CarbFix Pilot Project, Iceland. Energy Procedia, 1(1), 3641-3646. doi: https://doi.org/10.1016/j.egypro.2009.02.160
  1. McQueen, N., Kelemen, P., Dipple, G., Renforth, P., & Wilcox, J. (2020). Ambient weathering of magnesium oxide for CO2 removal from air. Nature Communications, 11(1), 3299. doi: 10.1038/s41467-020-16510-3
  1. Meharg, C., & Meharg, A. A. (2015). Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environmental and Experimental Botany, 120, 8-17. doi: https://doi.org/10.1016/j.envexpbot.2015.07.001
  1. Meissner, K. J., McNeil, B. I., Eby, M., & Wiebe, E. C. (2012). The importance of the terrestrial weathering feedback for multimillennial coral reef habitat recovery. Global Biogeochemical Cycles, 26(3), 1-20. doi: 10.1029/2011GB004098
  1. Menn, J. (2020). Stripe picks $1 million in carbon-removal projects to spur industry. Reuters. Retrieved from https://www.reuters.com/article/us-climate-change-stripe/stripe-picks-1-million-in-carbon-removal-projects-to-spur-industry-idUSKBN22U1YK
  1. Meysman, F. J. R., & Montserrat, F. (2017). Negative CO2 emissions via enhanced silicate weathering in coastal environments. Biology Letters, 13(4). doi: 10.1098/rsbl.2016.0905
  1. Mohanty, S. K., & Boehm, A. B. (2015). Effect of weathering on mobilization of biochar particles and bacterial removal in a stormwater biofilter. Water Research, 85, 208-215. doi: 10.1016/j.watres.2015.08.026
  1. Montserrat, F., Renforth, P., Hartmann, J., Leermakers, M., Knops, P., & Meysman, F. J. R. (2017). Olivine Dissolution in Seawater: Implications for CO2 Sequestration through Enhanced Weathering in Coastal Environments. Environmental Science & Technology, 51(7), 3960–3972. doi: 10.1021/acs.est.6b05942
  1. Moosdorf, N., Renforth, P., & Hartmann, J. (2014). Carbon Dioxide Efficiency of Terrestrial Enhanced Weathering. Environmental Science & Technology, 48(9), 4809-4816. doi: 10.1021/es4052022
  1. Morales-Flórez, V., Santos, A., Lemus, A., & Esquivias, L. (2011). Artificial weathering pools of calcium-rich industrial waste for CO2 sequestration. Chemical Engineering Journal, 166(1), 132-137. doi: https://doi.org/10.1016/j.cej.2010.10.039
  1. Navarre-Sitchler, A., & Brantley, S. (2007). Basalt weathering across scales. Earth and Planetary Science Letters, 261(1), 321-334. doi: https://doi.org/10.1016/j.epsl.2007.07.010
  1. Nooker, E. (2014). Impact of management practices on Minnesota’s specialty crop production: from biochar to tillage practices. University of Minnesota, Retrieved from http://conservancy.umn.edu/handle/11299/167302
  1. Oelkers, E. H., Declercq, J., Saldi, G. D., Gislason, S. R., & Schott, J. (2018). Olivine dissolution rates: A critical review. Chemical Geology, 500, 1-19. doi: https://doi.org/10.1016/j.chemgeo.2018.10.008
  1. Paulo, C., Power, I. M., Stubbs, A. R., Wang, B., Zeyen, N., & Wilson, S. A. (2021). Evaluating feedstocks for carbon dioxide removal by enhanced rock weathering and CO2 mineralization. Applied Geochemistry, 104955. doi: https://doi.org/10.1016/j.apgeochem.2021.104955
  1. Pidgeon, N. F., & Spence, E. (2017). Perceptions of enhanced weathering as a biological negative emissions option. Biology Letters, 13(4), 1-5. Retrieved from http://rsbl.royalsocietypublishing.org/content/13/4/20170024
  1. Pogge von Strandmann, P. A. E., Renforth, P., West, A. J., Murphy, M. J., Luu, T.-H., & Henderson, G. M. (2020). The lithium and magnesium isotope signature of olivine dissolution in soil experiments. Chemical Geology, 120008. doi: https://doi.org/10.1016/j.chemgeo.2020.120008
  1. Power, I. M., Dipple, G. M., Bradshaw, P. M. D., & Harrison, A. L. (2020). Prospects for CO2 mineralization and enhanced weathering of ultramafic mine tailings from the Baptiste nickel deposit in British Columbia, Canada. International Journal of Greenhouse Gas Control, 94, 102895. doi: https://doi.org/10.1016/j.ijggc.2019.102895
  1. Rau, G. H., Knauss, K. G., Langer, W. H., & Caldeira, K. (2007). Reducing energy-related CO2 emissions using accelerated weathering of limestone. Energy, 32(8), 1471-1477. doi: https://doi.org/10.1016/j.energy.2006.10.011
  1. Renforth, P. (2012). The potential of enhanced weathering in the UK. International Journal of Greenhouse Gas Control, 10, 229-243. Retrieved from http://www.sciencedirect.com/science/article/pii/S1750583612001466
  1. Renforth P. and Campbell J. S. 2021. The role of soils in the regulation of ocean acidificationPhil. Trans. R. Soc. B 37620200174.20200174. https://doi.org/10.1098/rstb.2020.0174

  2. Renforth, P., Pogge von Strandmann, P. A. E., & Henderson, G. M. (2015). The dissolution of olivine added to soil: Implications for enhanced weathering. Applied Geochemistry, 61, 109-118. doi: http://dx.doi.org/10.1016/j.apgeochem.2015.05.016
  1. Rinder, Thomas; von Hagke, Christoph. (2021). The influence of particle size on the potential of enhanced basalt weathering for carbon dioxide removal – Insights from a regional assessment. Journal of Cleaner Production. doi: https://doi.org/10.1016/j.jclepro.2021.128178.
  2. Rigopoulos, I., Harrison, A. L., Delimitis, A., Ioannou, I., Efstathiou, A. M., Kyratsi, T., & Oelkers, E. H. (2018). Carbon sequestration via enhanced weathering of peridotites and basalts in seawater. Applied Geochemistry, 91, 197-207. doi: https://doi.org/10.1016/j.apgeochem.2017.11.001
  1. Schuiling, R. D. (2013). Carbon Dioxide Sequestration, Weathering Approaches to. In T. Lenton & N. Vaughan (Eds.), Geoengineering Responses to Climate Change: Selected Entries from the Encyclopedia of Sustainability Science and Technology (pp. 141-168).
  1. Schuiling, R. D., & de Boer, P. L. (2010). Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability. Comment: Nature and laboratory models are different. International Journal of Greenhouse Gas Control, 4, 855-856. Retrieved from http://innovationconcepts.eu/res/literatuurSchuiling/2010schuiling_de_boercommenthangx.pdf
  1. Schuiling, R. D., & de Boer, P. L. (2011). Rolling stones; fast weathering of olivine in shallow seas for cost-effective CO2 capture and mitigation of global warming and ocean acidification. Earth Syst. Dynam. Discuss., 2011, 551-568. doi: 10.5194/esdd-2-551-2011
  1. Schuiling, R. D., & Krijgsman, P. (2006). Enhanced Weathering: An Effective and Cheap Tool to Sequester Co2. Climatic Change, 74(1), 349-354. doi: 10.1007/s10584-005-3485-y
  1. Schuiling, R. D., & Praagman, E. (2011). Olivine Hills: Mineral Water Against Climate Change. In S. D. Brunn (Ed.), Engineering Earth: The Impacts of Megaengineering Projects (pp. 2201-2206). Dordrecht: Springer Netherlands.
  1. Schuiling, R. D., & Tickell, O. (2010). Enhanced weathering of olivine to capture CO2. Journal of Applied Chemistry, 12, 510-519.
  1. Schuiling, R. D., Wilson, S. A., & Power, l. M. (2011). Enhanced silicate weathering is not limited by silicic acid saturation. Proceedings of the National Academy of Sciences, 108(12), E41-E41. doi: 10.1073/pnas.1019024108
  1. Sheffield, U. o. (2020). Applying rock dust to croplands could absorb up to 2 billion tonnes of CO2 from the atmosphere. org. Retrieved from https://phys.org/news/2020-07-croplands-absorb-billion-tonnes-co2.html
  1. Smith, K. L., Milnes, A. R., & Eggleton, R. A. (1987). Weathering of Basalt: Formation of Iddingsite. Clays and Clay Mineral, 35(6), 418-428. Retrieved from http://www.clays.org/journal/archive/volume%2035/35-6-418.pdf
  1. Spence, E., Cox, E., & Pidgeon, N. (2021). Exploring cross-national public support for the use of enhanced weathering as a land-based carbon dioxide removal strategy. Climatic Change, 165(1), 23. doi: 10.1007/s10584-021-03050-y
  1. Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. Journal of Geophysical Research: Oceans, 88(C14), 9671-9688. doi: 10.1029/JC088iC14p09671
  1. Strefler, J., et a. (2015). Integrated assessment of enhanced weathering. Paper presented at the International Energy Workshop, Abu Dhabi. https://irena.org/EventDocs/Session%204_Jessica%20Strefler_WEB.pdf
  1. Strefler, J., et al. (2018). Potential and costs of carbon dioxide removal by enhanced weathering of rocks. Environmental Research Letters, 13(3), 034010. Retrieved from http://stacks.iop.org/1748-9326/13/i=3/a=034010
  1. Tan, R. R., & Aviso, K. B. (2019). A linear program for optimizing enhanced weathering networks. Results in Engineering, 3, 100028. doi: https://doi.org/10.1016/j.rineng.2019.100028
  1. Tan, R. R., & Aviso, K. B. (2021). On life-cycle sustainability optimization of enhanced weathering systems. Journal of Cleaner Production, 289, 125836. doi: https://doi.org/10.1016/j.jclepro.2021.125836
  1. Tank, E. P. T. (2021). Carbon dioxide removal: Nature-based and technological solutions Retrieved from https://www.europarl.europa.eu/thinktank/en/document.html?reference=EPRS_BRI(2021)689336
  1. Taylor, L. L., et al. (2017). Simulating carbon capture by enhanced weathering with croplands: an overview of key processes highlighting areas of future model development. Biology Letters, 13(4), 1-8. Retrieved from http://rsbl.royalsocietypublishing.org/content/roybiolett/13/4/20160868.full.pdf
  1. Taylor, L. L., Leake, J. R., Quirk, J., Hardy, K., Banwart, S. A., & Beerling, D. J. (2009). Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology, 7(2), 171-191. doi: 10.1111/j.1472-4669.2009.00194.x
  1. Taylor, L. L., Quirk, J., Thorley, R. M. S., Kharecha, P. A., Hansen, J., Ridgwell, A., . . . Beerling, D. J. (2016). Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nature Climate Change, 6(4), 402-406. doi:10.1038/nclimate2882
  1. ten Berge, H. F. M., et al. (2012). Olivine Weathering in Soil, and Its Effects on Growth and Nutrient Uptake in Ryegrass (Lolium perenne L.): A Pot Experiment. Plos One, 7(8), 1-8. Retrieved from http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0042098&type=printable
  1. Tipper, E. T., Stevenson, E. I., Alcock, V., Knight, A. C. G., Baronas, J. J., Hilton, R. G., . . . Hughes, G. (2021). Global silicate weathering flux overestimated because of sediment–water cation exchange. Proceedings of the National Academy of Sciences, 118(1), e2016430118. doi: 10.1073/pnas.2016430118
  1. Tromso, U. o. (2017). Battered Earth revived by mineral weathering after mass extinction. Science Daily. Retrieved from https://www.sciencedaily.com/releases/2017/05/170505092607.htm
  1. Uchikawa, J., & Zeebe, R. E. (2008). Influence of terrestrial weathering on ocean acidification and the next glacial inception. Geophysical Research Letters, 35(23), 1-5. doi: doi:10.1029/2008GL035963
  1. Velbel, M. A. (2009). Dissolution of olivine during natural weathering. Geochimica Et Cosmochimica Acta, 73(20), 6098-6113. doi: https://doi.org/10.1016/j.gca.2009.07.024
  1. Walker, J. C. G., Hays, P. B., & Kasting, J. F. (1981). A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. Journal of Geophysical Research: Oceans, 86(C10), 9776-9782. doi: https://doi.org/10.1029/JC086iC10p09776
  1. org, S. (2018). David Beerling – Saving Ourselves with Rocks, Crops & Soil. YouTube. Retrieved from https://www.youtube.com/watch?v=0iAqxOMy61U&t=19s
  1. Webb, R. (2020). The Law of Enhanced Weathering for Carbon Dioxide Removal. Retrieved from https://climate.law.columbia.edu/sites/default/files/content/Webb%20-%20The%20Law%20of%20Enhanced%20Weathering%20for%20CO2%20Removal%20-%20Sept.%202020.pdf
  1. Webb, R. (2021). The Law of Enhanced Weathering for Carbon Dioxide Removal: Volume 2 – Legal Issues Associated with Materials Source. Retrieved from https://climate.law.columbia.edu/sites/default/files/content/Webb_Enhanced%20Weathering%20for%20CO2%20Removal_Vol%202_Mar21.pdf
  1. West, A. J., Galy, A., & Bickle, M. (2005). Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235(1), 211-228. doi: https://doi.org/10.1016/j.epsl.2005.03.020
  1. White, A. F., & Brantley, S. F. (1995). Chemical weathering rates of silicate minerals; an overview. In A. F. White & S. F. Brantley (Eds.), Reviews in Mineralogy and Geochemistry (Vol. 31, pp. 1-22).
  1. White, A. F., & Brantley, S. L. (2003). The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chemical Geology, 202(3), 479-506. doi: https://doi.org/10.1016/j.chemgeo.2003.03.001
  1. Wilson, J. (2004). Weathering of the primary rock-forming minerals: Processes, products and rates. Clay Minerals, 39, 233-266. doi: 10.1180/0009855043930133
  1. Wilson, S. A., Dipple, G. M., Power, I. M., Barker, S. L. L., Fallon, S. J., & Southam, G. (2011). Subarctic Weathering of Mineral Wastes Provides a Sink for Atmospheric CO2. Environmental Science & Technology, 45(18), 7727-7736. doi: 10.1021/es202112y
  1. Wogelius, R. A., & Walther, J. V. (1992). Olivine dissolution kinetics at near-surface conditions. Chemical Geology, 97(1), 101-112. doi: http://dx.doi.org/10.1016/0009-2541(92)90138-U
  1. Yao, F. X., Camps Arbestain, M., Virgel, S., Blanco, F., Arostegui, J., Macia-Agullo, J. A., & Macias, F. (2010). Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor. Chemosphere, 80, 724-732.
  1. Zeng, S., Liu, Z., & Kaufmann, G. (2019). Sensitivity of the global carbonate weathering carbon-sink flux to climate and land-use changes. Nature Communications, 10(1), 5749. doi:10.1038/s41467-019-13772-4
  1. Zinke, L. (2020). Wearing down olivine. Nature Reviews Earth & Environment, 2(1), 8, doi: https://doi.org/10.1038/s43017-020-00132-w

Hello