Dec 30, 2021

Movement tracking is a commonly used method to measure locomotion and environmental interaction. It is a highly versatile tool allowing for measurements involving memory and cognition, social interaction, pharmacological effects, anxiety and depression, and much more. Unfortunately, the algorithms commonly used for animal tracking struggle with increased environmental complexity such as uneven or dim lighting, interference from additional recording hardware (i.e., optogenetic or neurophysiological manipulation), and experimenter interaction. Thus, Guanglong Sun and colleagues have developed DeepBhvTracking, a novel tracking algorithm that combines deep-learning and background subtraction.

Using the convolutional neural network-based You Only Look Once (YOLO) algorithm in combination with standard background subtraction, DeepBhvTracking has a faster training time and superior accuracy and much faster tracking speed than other deep-learning based tracking software. DeepBhvTracking can also track multiple color labeled animals at once allowing for measurement of social interaction. Therefore, DeepBhvTracking is a tracking software that is fast, versatile, and accurate.

 This research tool was created by your colleagues. Please acknowledge the Principal Investigator, cite the article in which the tool was described, and include an RRID in the Materials and Methods of your future publications.  RRID:SCR_022351


Read the Paper!

Read more about DeepBhvTracking in the Frontiers in behavioral neuroscience paper!

GitHub Repository

Get access to necessary files and code for DeepBhvTracking from their GitHub repository!

Have questions? Send us an email!