Tag: Arduino

SignalBuddy

SEPTEMBER 19, 2019

Richard Warren, a graduate student in the Sawtell lab at Columbia University, recently shared his new open-source project called SignalBuddy:


SignalBuddy is an easy-to-make, easy-to-use signal generator for scientific applications. Making friends is hard, but making SignalBuddy is easy. All you need is an Arduino Uno! SignalBuddy replaces more complicated and (much) more expensive signal generators in laboratory settings where one millisecond resolution is sufficient. SignalBuddy generates digital or true analog signals (sine waves, step functions, and pulse trains), can be controlled with an intuitive serial monitor interface, and looks fabulous in an optional 3D printed enclosure.

To get SignalBuddy working, all you need to do is install the SignalBuddy.ino Arduino code provided on their github, and follow the step-by-step instructions on github to get the Arduino programmed up for your specific experimental needs. SignalBuddy can be used for numerous lab purposes, including creating pulse trains for optogenetic light stimulation, microstimulation, electrophysiology, or for programming up stimuli for behavioral paradigms.

Additionally, their hackaday site provides the instructions for 3D printing an enclosure to house the Arduino inside using just two .stl files.


For more information, check out the SignalBuddy github repository here.

You can also get further details on the SignalBuddy Hackaday.io page here.

 

Fun Fact: This group also developed KineMouse Wheel, a project previously posted on OpenBehavior and is now being used in numerous labs! Cheers to another great open-source project from Richard Warren and the Sawtell lab!

Actifield

March 21, 2019

Victor Wumbor-Apin Kumbol and colleagues have developed and shared Actifield, an automated open-source actimeter for rodents, in a recent HardwareX publication.


Measuring locomotor activity can be a useful readout for understanding effects of a number of experimental manipulations related to neuroscience research. Commercially available locomotor activity recording devices can be cost-prohibitive and often lack the ability to be customized to fit a specific lab’s needs. Kumbol et al. offer an open-source alternative that utilizes infrared motion detection and an arduino to record activity in a variety of chamber set ups. A full list of build materials, links to 3D-print and laser-cut files, and assembly instructions are available in their publication.

Read more from HardwareX!


OpenFeeder

October 17, 2018

In the journal HardwareX, Jinook Oh and colleagues share their design for OpenFeeder, an automatic feeder for animal experiments.


Automatic delivery of precisely measured food amounts is important when studying reward and feeding behavior. Commercially available devices are often designed with specific species and food types in mind, limiting the ways that they can be used. This open-source automatic feeding design can easily be customized for food types from seeds to pellets to fit the needs of any species. OpenFeeder integrates plexiglass tubes, Arduino Uno, a motor driver, and piezo sensor to reliably deliver accurate amounts of food, and can also be built using 3D printed parts.

Read more from HardwareX.

Or check out the device on Open Science Framework and Github.

 

PriED: An Open Source 3-D Printed Modular Micro-Drive System for Acute Neurophysiology

August 1, 2018

In a 2014 PLoS ONE article, Shaun R. Patel and colleagues share their design for PriED, an easy to assemble modular micro-drive system for acute primate neurophysiology.


Electrode micro-drives are a great tool that allow for independent positioning of multiple electrodes in primate neurophysiology, however, commercially available micro-drives are often expensive. Printed Electronic Device (PriED) is designed to advance existing micro-drive technology while staying inexpensive and requiring minimal skill and effort to assemble. The device combines 3D printed parts and affordable, commercially available steel and brass components which can then be controlled manually, or automatically with the addition of an optional motor. Using 3D printing technology researchers have the flexibility to be able to modify part designs and create custom solutions to specific recording needs. A public repository of drive designs has been made available where researchers can download PriED components to print for assembly. Additionally, researchers can upload modified designs with annotations for others to use. PriED is an innovative, inexpensive, and user friendly micro-drive solution for flexible multi-site cortical and subcortical recordings in non-human primates.

Read more here!

Or check out the repository here!


Feeding Experimentation Device (FED) part 2: new design and code

October 28, 2016

Alexxai Kravitz has generously shared the following regarding FED, part 2:


The Feeding Experimentation Device (FED) is a free, open-source system for measuring food intake in rodents. FED uses an Arduino processor, a stepper motor, an infrared beam detector, and an SD card to record time-stamps of 20mg pellets eaten by singly housed rodents. FED is powered by a battery, which allows it to be placed in colony caging or within other experimental equipment. The battery lasts ~5 days on a charge, providing uninterrupted feeding records over this duration.  The electronics for building each FED cost around $150USD, and the 3D printed parts cost between $20 and $400, depending on access to 3D printers and desired print quality.

The Kravitz lab has published a large update of their Feeding Experimentation Device (FED) to their Github site, including updated 3D design files that print more easily and updates to the code to dispense pellets more reliably.


Kravitz Lab GitHub

Step-by-step build instructions are available here.

Nose-Poke System – Kelly Tan Research Group

The Kelly Tan research group at the University of Basel, Switzerland investigates the neural correlates of motor behavior, focusing on the role of the basal ganglia in controlling various aspects of motor actions. To aid in their investigation, the group has developed an open-source nose-poke system utilizing an Arduino microcontroller, several low-cost electronic components, and a PVC behavioral arena. These researchers have shared the following information about the project:

Giorgio Rizzi, Meredith E. Lodge, Kelly R Tan.
MethodsX 3 (2016) 326-332
Operant behavioral tasks for animals have long been used to probe the function of multiple brain regions. The recent development of tools and techniques has opened the door to refine the answer to these same questions with a much higher degree of specificity and accuracy, both in biological and spatial-temporal domains. A variety of systems designed to test operant behavior are now commercially available, but have prohibitive costs. Here, we provide a low-cost alternative to a nose poke system for mice. Adapting a freely available sketch for ARDUINO boards, in combination with an in-house built PVC box and inexpensive electronic material we constructed a four-port nose poke system that detects and counts port entries.
  • We provide a low cost alternative to commercially available nose poke system.
  • Our custom made apparatus is open source and TTL compatible.
  • We validate our system with optogenetic self-stimulation of dopamine neurons in mice.

IMG_20160126_163648 IMG_20160126_163703 IMG_20160126_163714 IMG_20160126_163725 IMG_20160127_124611 IMG_20160127_124624 IMG_20160127_150643 IMG_20160127_150708


The Kelly Tan research group provides further documentation for this device, including SketchUp design files, Arduino source code, and a full bill of materials, as supplementary data in their 2016 paper.

ArduiPod Box

ArduiPod Box is a simple, comprehensive touchscreen-based operant conditioning chamber that utilizes an iPod Touch in conjunction with an Arduino microcontroller to present visual and auditory stimuli, record behavior in the form of nose-pokes or screen touches, and deliver liquid reward. In his 2014 paper, Oskar Pineño introduces ArduinoPod Box and demonstrates the use of the device in a visual discrimination task.

ArduiPod Box relies on an open-source iOS app named Shaping that can be downloaded for free at the iTunes store, as well as, on Dr. Pineno’s website. Detailed instructions for assembly of the ArduiPod Box are also detailed on the website. In addition, video demonstrating of ArduiPod can be found here.

13428_2013_367_Fig2b_HTML

 


Pineño, Oskar (2014). ArduiPod Box: a low-cost and open-source Skinner box using an iPod Touch and an Arduino microcontroller. Behav Res Methods. 46(1): 196–205

Visual Stimuli Presentation Device

This apparatus is designed to present complex visual stimuli in rodent behavioral experiments, such as visual discrimination tasks, or visually guided choice paradigms. This low-cost device utilizes an Arduino Uno microcontroller, and three (green) 8×8 LED matrices to present a montage of visual cues across a behavioral arena. Diffusion filters were used to decrease the luminance of the visual cues in order to render them more suitable for rodent visual discrimination. The present design incorporates three light displays to be mounted above three choice ports (nose pokes, levers, etc.); however as many as 8 light displays can be controlled by a single Arduino. This flexible device can be programmed to display a multitude of distinct static and dynamic visual cues, can easily be integrated into an existing behavioral chamber, and seamlessly interface with commercial systems such as MedPC. The wiring diagram and schematic below detail the configuration of this apparatus in a MedPC-based system; however, this device can be controlled by any comparable system, TTL signal, or other device in a behavioral chamber.

SchematicWiring Diagram

Adafruit provides extensive documentation on assembly and programming of these components on their website.

Please contact openbehavior@gmail.com for Arduino source code and the 3D design files of the mounts used to install this device into a behavioral chamber.

Feeding Experimentation Device (FED)

WP_20160320_003Feeding Experimentation Device (FED) is a home cage-compatible feeding system that measures food intake with high accuracy and temporal resolution. FED offers a low-cost alternative (~$350) to commercial feeders, with the convenience of use in tradition colony rack caging.

In their 2016 paper, “Feeding Experimentation Device (FED): A flexible open-source device for measuring feeding behavior,” Katrina P. Nguyen, Timothy J. O’Neal, Olurotimi A. Bolonduro, Elecia White, and Alexxai V. Kravitz validate the reliability of food delivery and precise measurement of feeding behavior provided by FED, as well as, demonstrate the application of FED in an experiment examining light and dark-cycle feeding trends, and another measuring optogenetically-evoked feeding.

WP_20160324_10_54_40_Pro

KravitzLab has shared the Arduino scripts for controlling FED, as well as, the python code used to analyze the feeding data collected by FED on the KravitzLab Github. Additionally, build instructions and power considerations are detailed on the FED Wiki page and 3D Design Files provided through TinkerCAD.


Nguyen, Katrina; O’Neal, Timothy; Bolonduro, Olurotimi; White, Elecia; Kravitz, Alexxai (2016). Feeding Experimentation Device (FED): A flexible open-source device for measuring feeding behavior. J Neurosci Methods, 267:108-14.

Rodent Operant Bucket (ROBucket)

Horizontal Figure 1-01The Rodent Operant Bucket (ROBucket), designed by Dr. Alexxai Kravitz and Kavya Devarakonda of the Eating and Addiction Section, Diabetes Endocrinology and Obesity Branch, NIDDK, is an inexpensive and easily assembled open-source operant chamber, based on the Arduino microcontroller platform, that can be used to train mice to respond for a reward.

The apparatus contains two nose pokes, a drinking well, and a solenoid-controlled sucrose delivery system. The chamber can easily run magazine training, fixed ratio and progressive ratio training schedules, and can be programmed to run more complicated behavioral paradigms.

rodent operant bucket

In their 2016 paper, “ROBucket: A low cost operant chamber based on the Arduino microcontroller,” Kavya Devarakonda, Katrina P. Nguyen, and Alexxai V. Kravitz validate ROBucket by demonstrating its application in an operant conditioning paradigm, as well as, detail the hardware comprising ROBucket, and the flexible software controlling it.

Further documentation of this device can be found on the NIDDK website, where Dr. Kravitz and his lab share ROBucket construction instructions, ROBucket design files, ROBucket source code, and 3D printing design files.


 Kavya Devarakonda, Katrina P. Nguyen, Alexxai V. Kravitz (2016). ROBucket: A low cost operant chamber based on the Arduino microcontroller. Behav Res Methods 48(2): 503–509.