DeepSqueak

Jan 9, 2019

Kevin Coffey has shared the following about DeepSqueak, a deep learning-based system for detection and analysis of ultrasonic vocalizations, which he developed with Russell Marx.


Rodents engage in social communication through a rich repertoire of ultrasonic vocalizations (USVs). Recording and analysis of USVs can be performed noninvasively in almost any rodent behavioral model to provide rich insights into the emotional state and motor function. Despite strong evidence that USVs serve an array of communicative functions, technical and financial limitations have inhibited widespread adoption of vocalization analysis. Manual USV analysis is slow and laborious, while existing automated analysis software are vulnerable to broad spectrum noise routinely encountered in the testing environment.

To promote accessible and accurate USV research, we present “DeepSqueak”, a fully graphical MATLAB package for high-throughput USV detection, classification, and analysis. DeepSqueak applies state-of-the-art regional object detection neural networks (Faster-RCNN) to detect USVs. This dramatically reduces the false positive rate to facilitate reliable analysis in standard experimental conditions. DeepSqueak included pre-trained detection networks for mouse USVs, and 50 kHz and 22 kHz rat USVs. After detection, USVs can be clustered by k-means models or classified by trainable neural networks.

This research tool was created by your colleagues. Please acknowledge the Principal Investigator, cite the article in which the tool was described, and include an RRID in the Materials and Methods of your future publications.  Project portal RRID:SCR_021450; Software RRID:SCR_021524

Check out projects similar to this!

Miniscope-LFOV

Miniscope-LFOV

E-Scope

E-Scope

FARESHARE

FARESHARE

custom-fitting cranial implants

custom-fitting cranial implants

LFP Monitoring: Multianimal Chronic Video Platform for Behavioral Scoring

LFP Monitoring: Multianimal Chronic Video Platform for Behavioral Scoring

BrainWAVE: Noninvasive Rhythm Stimulation

BrainWAVE: Noninvasive Rhythm Stimulation

Application of 3D Printing Technology to Produce Hippocampal Customized Guide Cannulas

Application of 3D Printing Technology to Produce Hippocampal Customized Guide Cannulas

RIVETS

RIVETS

OpBox

OpBox

Falcon: a highly flexible open-source software for closed-loop neuroscience

Falcon: a highly flexible open-source software for closed-loop neuroscience

Have questions? Send us an email!