Tag: 3D Print

3D Printed Headstage Implant

June 6, 2019

Richard Pinnell from Ulrich Hofmann’s lab has three publications centered around open-source and 3D printed methods for headstage implant protection and portable / waterproof DBS and EEG to pair with water maze activity. We share details on the three studies below:


Most researchers opt to single-house rodents after rodents have undergone surgery. This helps the wound heal and prevent any issues with damage to the implant. However, there is substantial benefits to socially-housing rodents, as social isolation can create stressors for them. As a way to continue to socially-house rats, Pinnell et al. (2016a) created a novel 3D-printed headstage socket to surround an electrode connector. Rats were able to successfully be pair housed with these implants and their protective caps.

The polyamide headcap socket itself is 3D printed, and a stainless steel thimble can be screwed into it. The thimble can be removed by being unscrewed to reveal the electrode connector. This implant allows both for increased well-being of the rodent post-surgery, but also has additional benefits in that it can prevent any damage to the electrode implant during experiments and keeps the electrode implant clean as well.

The 3D printed headcap was used in a second study (Pinnell et al., 2016b) for wireless EEG recording in rats during a water maze task. The headstage socket housed the PCB electrode connector and the waterproof wireless system was attached. In this setup, during normal housing conditions, this waterproof attachment was replaced with a standard 18×9 mm stainless-steel sewing thimble, which contained 1.2 mm holes drilled at either end for attachment to the headstage socket. A PCB connector was manufactured to fit inside the socket, and contains an 18-pin zif connector, two DIP connectors, and an 18-pin Omnetics electrode connector for providing an interface between the implanted electrodes and the wireless recording system.

Finally, the implant was utilized in a third study (Pinnell et al., 2018) where the same group created a miniaturized, programmable deep-brain stimulator for use in a water maze. A portable deep brain stimulation (DBS) device was created through using a PCB design, and this was paired with the 3D printed device. The 3D printed headcap was modified from its use in Pinnell et al., 2016a to completely cover the implant and protect the PCB. The device, its battery, and housing weighs 2.7 g, and offers protection from both the environment and from other rats, and can be used in DBS studies during behavior in a water maze.

The portable stimulator, 3D printed cap .stl files, and more files from the publications can be found on https://figshare.com/s/31122e0263c47fa5dabd.


Pinnell, R. C., Almajidy, R. K., & Hofmann, U. G. (2016a). Versatile 3D-printed headstage implant for group housing of rodents. Journal of neuroscience methods, 257, 134-138.

Pinnell, R. C., Almajidy, R. K., Kirch, R. D., Cassel, J. C., & Hofmann, U. G. (2016b). A wireless EEG recording method for rat use inside the water maze. PloS one, 11(2), e0147730.

Actifield

March 21, 2019

Victor Wumbor-Apin Kumbol and colleagues have developed and shared Actifield, an automated open-source actimeter for rodents, in a recent HardwareX publication.


Measuring locomotor activity can be a useful readout for understanding effects of a number of experimental manipulations related to neuroscience research. Commercially available locomotor activity recording devices can be cost-prohibitive and often lack the ability to be customized to fit a specific lab’s needs. Kumbol et al. offer an open-source alternative that utilizes infrared motion detection and an arduino to record activity in a variety of chamber set ups. A full list of build materials, links to 3D-print and laser-cut files, and assembly instructions are available in their publication.

Read more from HardwareX!


TRIO Platform

December 12, 2018

Vladislav Voziyanov and colleagues have developed and shared the TRIO Platform, a low-profile in vivo imaging support and restraint system for mice.


In vivo optical imaging methods are common tools for understanding neural function in mice. This technique is often performed in head-fixed,  anesthetized animals, which requires monitoring of anesthesia level and body temperature while stabilizing the head. Fitting each of the components necessary for these experiments on a standard microscope stage can be rather difficult. Voziyanov and colleagues have shared their design for the TRIO (Three-In-One) Platform. This system is compact and  provides sturdy head fixation, a gas anesthesia mask, and warm water bed. While the design is compact enough to work with a variety of microscope stages, the use of 3D printed components makes this design customizable.

https://www.frontiersin.org/files/Articles/184541/fnins-10-00169-HTML/image_m/fnins-10-00169-g004.jpg

Read more about the TRIO Platform in Frontiers in Neuroscience!

The design files and list of commercially available build components are provided here.


PriED: An Open Source 3-D Printed Modular Micro-Drive System for Acute Neurophysiology

August 1, 2018

In a 2014 PLoS ONE article, Shaun R. Patel and colleagues share their design for PriED, an easy to assemble modular micro-drive system for acute primate neurophysiology.


Electrode micro-drives are a great tool that allow for independent positioning of multiple electrodes in primate neurophysiology, however, commercially available micro-drives are often expensive. Printed Electronic Device (PriED) is designed to advance existing micro-drive technology while staying inexpensive and requiring minimal skill and effort to assemble. The device combines 3D printed parts and affordable, commercially available steel and brass components which can then be controlled manually, or automatically with the addition of an optional motor. Using 3D printing technology researchers have the flexibility to be able to modify part designs and create custom solutions to specific recording needs. A public repository of drive designs has been made available where researchers can download PriED components to print for assembly. Additionally, researchers can upload modified designs with annotations for others to use. PriED is an innovative, inexpensive, and user friendly micro-drive solution for flexible multi-site cortical and subcortical recordings in non-human primates.

Read more here!

Or check out the repository here!


Syringe Pump – Pearce Research Group

In their 2014 paper “Open-Source Syringe Pump Library,” Bas Wijnen, Emily Hunt, Gerald Anzalone, and Joshua Pearce detail an open-source syringe pump apparatus developed in their lab, as well as, validate the performance of the device. The authors write, “This syringe pump was designed using freely available open-source computer aided design (CAD) software and manufactured using an open-source RepRap 3-D printer and readily available parts. The design, bill of materials and assembly instructions are globally available to anyone wishing to use them on the Open-source syringe pump Approdepia page… The cost of the entire system, including the controller and web-based control interface, is on the order of 5% or less than one would expect to pay for a commercial syringe pump having similar performance. The design should suit the needs of a given research activity requiring a syringe pump including carefully controlled dosing of reagents, pharmaceuticals, and delivery of viscous 3-D printer media among other applications.”

Pearce Research group also provides an Open Source Lab page dedicated to low-cost, open-source lab hardware.


Wijnen, Bas; Hunt, Emily; Anzalone, Gerald; Pearce, Joshua (2014). Open-Source Syringe Pump Library. PLoS ONE, 9(9), e107216.