Category: Uncategorized

RAD

August 1, 2019

In their recent eNeuro article, Bridget Matikainen-Ankney and colleagues from the Kravitz Lab have developed and shared their device, rodent activity detector (RAD), a low-cost system that can track and record activity in rodent home cages.


Physical activity is an important measure used in many research studies and is an important determinant of human health. Current methods for measuring physical activity in laboratory rodents have limitations including high expense, specialized caging/equipment, and high computational overhead. To address these limitations, Matikainen-Ankney et al. designed an open-source and cost-effective device for measuring rodent behavior.

In their new manuscript, they describe the design and implementation of RAD, rodent activity detector. The system allows for high throughput installation, minimal investigator intervention and circadian monitoring.  The design includes a battery powered passive infrared (PIR) sensor, microcontroller, microSD card logger, and an oLED screen for displaying data. All of the build instructions for RAD manufacture and programming, including the Arduino code, are provided on the project’s website.

The system records the number of PIR active bouts and the total duration the PIR is active each minute. The authors report that RAD is useful for quantifying changes across minutes rather than on a second to second time-scale, so the default data-logging frequency is set to one minute. The CSV files can be viewed and data visualized using provided python scripts. Device validation with video monitoring strongly correlated PIR data with speed and showed it recorded place to place locomotion but not slow or in place movements. To verify the device’s utility, RAD was used to collect physical activity data from 40 animals for 10 weeks. RAD detected high fat diet (HFD)-induced changes in activity and quantified individual animals’ circadian rhythms. Several major advantages of this tool are that the PIR sensor is not triggered by activity in other cages, it can detect and quantify within-mouse activity changes over time, and little investigator intervention other than infrequent battery replacement is necessary. Although the design was optimized for the lab’s specific caging, the open-source nature of the project makes it easily modifiable.

More details on RAD can be found in their eNeuro manuscript here, and all documentation can also be found on the project’s Hackaday.io page.


Matikainen-Ankney, B. A., Garmendia-Cedillos, M., Ali, M., Krynitsky, J., Salem, G., Miyazaki, N. L., … Kravitz, A. V. (2019). Rodent Activity Detector (RAD), an Open Source Device for Measuring Activity in Rodent Home Cages. ENeuro, 6(4). https://doi.org/10.1523/ENEURO.0160-19.2019

ezTrack

June 13, 2019

Zach Pennington from Denise Cai’s lab at Mt. Sinai recently posted a preprint describing their latest open-source project called ezTrack:


ezTrack is an open-source, platform independent set of behavior analysis pipelines using interactive Python (iPython/Jupyter Notebook) that researchers with no prior programming experience can use. ezTrack is a sigh of relief for researchers with little to no computer programming experience. Behavioral tracking analysis shouldn’t be limited to those with extensive programming knowledge, and ezTrack is a nice alternative to currently available software that may require a bit more programming experience. The manuscript and Jupyter notebooks are written in the style of a tutorial, and is meant to provide straightforward instructions to the user on implementing ezTrack. ezTrack is unique from other recent video analysis toolboxes in that this method does not use deep learning algorithms and thus does not require training sets for transfer learning.

ezTrack can be used to analyze rodent behavior videos of a single animal in different settings, and the authors provide examples of positional analysis across several tasks (place-preference, water-maze, open-field, elevated plus maze, light-dark boxes, etc), as well as analysis of freezing behavior. ezTrack can provide frame-by-frame data output in .csv files, and users can crop the frames of the video to get rid of any issue with cables from optogenetic or electrophysiology experiments. ezTrack can take on multiple different video formats, such as mpg1, wav, avi, and more.

Aside from the benefit of being open-source, there are several major advantages of ezTrack. Notably, the tool is user-friendly in that it is accessible to researchers with little to no programming background. The user does not need to make many adjustments to parameters of the toolbox, and the data can processed into interactive visualizations and is easily extractable in .csv files. ezTrack is both operating system and hardware independent and can be used across multiple platforms. Utilizing ipython/Jupyter Notebook allows researchers to easily replicate their analyses as well.

Check out their GitHub with more details on how to use ezTrack: https://github.com/denisecailab/ezTrack


Pennington, Z. T., Dong, Z., Bowler, R., Feng, Y., Vetere, L. M., Shuman, T., & Cai, D. J. (2019). ezTrack: An open-source video analysis pipeline for the investigation of animal behavior. BioRxiv, 592592. 

OpenBehavior Feedback Survey

We are looking for your feedback to understand how we can better serve the community! We’re also interested to know if/how you’ve implemented some of the open-source tools from our site in your own research.

We would greatly appreciate it if you could fill out a short survey (~5 minutes to complete) about your experiences with OpenBehavior.

https://american.co1.qualtrics.com/jfe/form/SV_0BqSEKvXWtMagqp

Thanks!